ترغب بنشر مسار تعليمي؟ اضغط هنا

Traffic Prediction Based on Random Connectivity in Deep Learning with Long Short-Term Memory

87   0   0.0 ( 0 )
 نشر من قبل Yuxiu Hua
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traffic prediction plays an important role in evaluating the performance of telecommunication networks and attracts intense research interests. A significant number of algorithms and models have been put forward to analyse traffic data and make prediction. In the recent big data era, deep learning has been exploited to mine the profound information hidden in the data. In particular, Long Short-Term Memory (LSTM), one kind of Recurrent Neural Network (RNN) schemes, has attracted a lot of attentions due to its capability of processing the long-range dependency embedded in the sequential traffic data. However, LSTM has considerable computational cost, which can not be tolerated in tasks with stringent latency requirement. In this paper, we propose a deep learning model based on LSTM, called Random Connectivity LSTM (RCLSTM). Compared to the conventional LSTM, RCLSTM makes a notable breakthrough in the formation of neural network, which is that the neurons are connected in a stochastic manner rather than full connected. So, the RCLSTM, with certain intrinsic sparsity, have many neural connections absent (distinguished from the full connectivity) and which leads to the reduction of the parameters to be trained and the computational cost. We apply the RCLSTM to predict traffic and validate that the RCLSTM with even 35% neural connectivity still shows a satisfactory performance. When we gradually add training samples, the performance of RCLSTM becomes increasingly closer to the baseline LSTM. Moreover, for the input traffic sequences of enough length, the RCLSTM exhibits even superior prediction accuracy than the baseline LSTM.



قيم البحث

اقرأ أيضاً

Time series prediction can be generalized as a process that extracts useful information from historical records and then determines future values. Learning long-range dependencies that are embedded in time series is often an obstacle for most algorit hms, whereas Long Short-Term Memory (LSTM) solutions, as a specific kind of scheme in deep learning, promise to effectively overcome the problem. In this article, we first give a brief introduction to the structure and forward propagation mechanism of the LSTM model. Then, aiming at reducing the considerable computing cost of LSTM, we put forward the Random Connectivity LSTM (RCLSTM) model and test it by predicting traffic and user mobility in telecommunication networks. Compared to LSTM, RCLSTM is formed via stochastic connectivity between neurons, which achieves a significant breakthrough in the architecture formation of neural networks. In this way, the RCLSTM model exhibits a certain level of sparsity, which leads to an appealing decrease in the computational complexity and makes the RCLSTM model become more applicable in latency-stringent application scenarios. In the field of telecommunication networks, the prediction of traffic series and mobility traces could directly benefit from this improvement as we further demonstrate that the prediction accuracy of RCLSTM is comparable to that of the conventional LSTM no matter how we change the number of training samples or the length of input sequences.
158 - Xiangang Li , Xihong Wu 2014
Long short-term memory (LSTM) based acoustic modeling methods have recently been shown to give state-of-the-art performance on some speech recognition tasks. To achieve a further performance improvement, in this research, deep extensions on LSTM are investigated considering that deep hierarchical model has turned out to be more efficient than a shallow one. Motivated by previous research on constructing deep recurrent neural networks (RNNs), alternative deep LSTM architectures are proposed and empirically evaluated on a large vocabulary conversational telephone speech recognition task. Meanwhile, regarding to multi-GPU devices, the training process for LSTM networks is introduced and discussed. Experimental results demonstrate that the deep LSTM networks benefit from the depth and yield the state-of-the-art performance on this task.
174 - Yoav Levine , Or Sharir , Alon Ziv 2017
A key attribute that drives the unprecedented success of modern Recurrent Neural Networks (RNNs) on learning tasks which involve sequential data, is their ability to model intricate long-term temporal dependencies. However, a well established measure of RNNs long-term memory capacity is lacking, and thus formal understanding of the effect of depth on their ability to correlate data throughout time is limited. Specifically, existing depth efficiency results on convolutional networks do not suffice in order to account for the success of deep RNNs on data of varying lengths. In order to address this, we introduce a measure of the networks ability to support information flow across time, referred to as the Start-End separation rank, which reflects the distance of the function realized by the recurrent network from modeling no dependency between the beginning and end of the input sequence. We prove that deep recurrent networks support Start-End separation ranks which are combinatorially higher than those supported by their shallow counterparts. Thus, we establish that depth brings forth an overwhelming advantage in the ability of recurrent networks to model long-term dependencies, and provide an exemplar of quantifying this key attribute which may be readily extended to other RNN architectures of interest, e.g. variants of LSTM networks. We obtain our results by considering a class of recurrent networks referred to as Recurrent Arithmetic Circuits, which merge the hidden state with the input via the Multiplicative Integration operation, and empirically demonstrate the discussed phenomena on common RNNs. Finally, we employ the tool of quantum Tensor Networks to gain additional graphic insight regarding the complexity brought forth by depth in recurrent networks.
87 - Xiangang Li , Xihong Wu 2016
Long short-term memory (LSTM) recurrent neural networks (RNNs) have been shown to give state-of-the-art performance on many speech recognition tasks, as they are able to provide the learned dynamically changing contextual window of all sequence histo ry. On the other hand, the convolutional neural networks (CNNs) have brought significant improvements to deep feed-forward neural networks (FFNNs), as they are able to better reduce spectral variation in the input signal. In this paper, a network architecture called as convolutional recurrent neural network (CRNN) is proposed by combining the CNN and LSTM RNN. In the proposed CRNNs, each speech frame, without adjacent context frames, is organized as a number of local feature patches along the frequency axis, and then a LSTM network is performed on each feature patch along the time axis. We train and compare FFNNs, LSTM RNNs and the proposed LSTM CRNNs at various number of configurations. Experimental results show that the LSTM CRNNs can exceed state-of-the-art speech recognition performance.
146 - Eslam Eldeeb , Mohammad Shehab , 2021
The current random access (RA) allocation techniques suffer from congestion and high signaling overhead while serving massive machine type communication (mMTC) applications. To this end, 3GPP introduced the need to use fast uplink grant (FUG) allocat ion in order to reduce latency and increase reliability for smart internet-of-things (IoT) applications with strict QoS constraints. We propose a novel FUG allocation based on support vector machine (SVM), First, MTC devices are prioritized using SVM classifier. Second, LSTM architecture is used for traffic prediction and correction techniques to overcome prediction errors. Both results are used to achieve an efficient resource scheduler in terms of the average latency and total throughput. A Coupled Markov Modulated Poisson Process (CMMPP) traffic model with mixed alarm and regular traffic is applied to compare the proposed FUG allocation to other existing allocation techniques. In addition, an extended traffic model based CMMPP is used to evaluate the proposed algorithm in a more dense network. We test the proposed scheme using real-time measurement data collected from the Numenta Anomaly Benchmark (NAB) database. Our simulation results show the proposed model outperforms the existing RA allocation schemes by achieving the highest throughput and the lowest access delay of the order of 1 ms by achieving prediction accuracy of 98 $%$ when serving the target massive and critical MTC applications with a limited number of resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا