ﻻ يوجد ملخص باللغة العربية
Substantial evidence indicates that the brain uses principles of non-linear dynamics in neural processes, providing inspiration for computing with nanoelectronic devices. However, training neural networks composed of dynamical nanodevices requires finely controlling and tuning their coupled oscillations. In this work, we show that the outstanding tunability of spintronic nano-oscillators can solve this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the high frequency tunability of the oscillators and their mutual coupling. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with non-linear dynamical features: here, oscillations and synchronization. This demonstration is a milestone for spintronics-based neuromorphic computing.
The recent demonstration of neuromorphic computing with spin-torque nano-oscillators has opened a path to energy efficient data processing. The success of this demonstration hinged on the intrinsic short-term memory of the oscillators. In this study,
We are reporting a new type of synchronization, termed dancing synchronization, between two spin-torque nano-oscillators (STNOs) coupled through spin waves. Different from the known synchronizations in which two STNOs are locked with various fixed re
Spin transfer torque nano-oscillators are potential candidates for replacing the traditional inductor based voltage controlled oscillators in modern communication devices. Typical oscillator designs are based on trilayer magnetic tunnel junctions whi
We investigate analytically and numerically the synchronization dynamics of dipolarly coupled vortex based Spin-Torque Nano Oscillators (STNO) with different pillar diameters. We identify the critical interpillar distances on which synchronization oc
Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic (FM) and nonmagnetic (NM) metals are ultra-compact current-controlled microwave signal sources. They serve as a convenient testbed for studies of spin-orbit torque physics and are