ترغب بنشر مسار تعليمي؟ اضغط هنا

Status of hadronic light-by-light scattering and the muon $(g-2)$

118   0   0.0 ( 0 )
 نشر من قبل Pere Masjuan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk we review the recent progress on the numerical determination of the Hadronic Light-by-Light contribution to the anomalous magnetic moment of the muon and we discuss the role of experimental data on the accuracy of its determination. Special emphasis on the main contribution, the pseudoscalar piece, is made. Gathering recent progress in the light-by-light scattering contribution we consider $a_{mu}^{{mathrm{HLBL}}} = (12.1pm3.0)times10^{-10}$ as a good summary of the state-of-the-art calculations which still claims for a $4sigma$ deviation between theory and experiment for the $(g-2)_{mu}$.



قيم البحث

اقرأ أيضاً

230 - Andreas Nyffeler 2013
We give an update on the status of the hadronic light-by-light scattering contribution to the muon g-2. We review recent work by various groups, list some of the open problems and give an outlook on how to better control the uncertainty of this contr ibution. This is necessary in order to fully profit from planned future muon g-2 experiments to test the Standard Model. Despite some recent developments, we think that the estimate a_{mu}^{HLbL} = (116 pm 40) x 10^{-11} still gives a fair description of the current situation.
120 - Andreas Nyffeler 2017
We briefly review the current status of the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. Based on various model calculations in the literature, we obtain the estimate a_{mu}^{HLbL} = (102 pm 39) x 10^{ -11}. Recent developments including more model-independent approaches using dispersion relations and lattice QCD, that could lead to a more reliable estimate, are also discussed.
247 - Andreas Nyffeler 2010
We review recent developments concerning the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. We first discuss why fully off-shell hadronic form factors should be used for the evaluation of this contributi on to the g-2. We then reevaluate the numerically dominant pion-exchange contribution in the framework of large-N_C QCD, using an off-shell pion-photon-photon form factor which fulfills all QCD short-distance constraints, in particular, a new short-distance constraint on the off-shell form factor at the external vertex in g-2, which relates the form factor to the quark condensate magnetic susceptibility in QCD. Combined with available evaluations of the other contributions to hadronic light-by-light scattering this leads to the new result a_{mu}(LbyL; had) = (116 pm 40) x 10^{-11}, with a conservative error estimate in view of the many still unsolved problems. Some potential ways for further improvements are briefly discussed as well. For the electron we obtain the new estimate a_{e}(LbyL; had) = (3.9 pm 1.3) x 10^{-14}.
We briefly review several activities at Mainz related to hadronic light-by-light scattering (HLbL) using lattice QCD. First we present a position-space approach to the HLbL contribution in the muon g-2, where we focus on exploratory studies of the pi on-pole contribution in a simple model and the lepton loop in QED in the continuum and in infinite volume. The second part describes a lattice calculation of the double-virtual pion transition form factor F_{pi^0 gamma^* gamma^*}(q_1^2, q_2^2) in the spacelike region with photon virtualities up to 1.5 GeV^2 which paves the way for a lattice calculation of the pion-pole contribution to HLbL. The third topic involves HLbL forward scattering amplitudes calculated in lattice QCD which can be described, using dispersion relations (HLbL sum rules), by gamma^* gamma^* -> hadrons fusion cross sections and then compared with phenomenological models.
The hadronic light-by-light scattering contribution to the muon g-2 is the most troublesome component of its theoretical prediction; (1) it cannot be determined from the other measurable quantities, (2) the dimensional argument and the estimation bas ed on hadronic models imply that the magnitude of this contribution may be comparable to the discrepancy between the standard model prediction and the experimental value. The direct approach to evaluate the hadronic light-by-light scattering contribution requires the evaluation of the correlation function of {it four} hadronic electromagnetic currents, and the summation of it over two independent four-momenta of off-shell photons, which is far from the reach of direct lattice simulation. Here we propose an alternative method using combined (QCD + QED) lattice simulations to evaluate the hadronic light-by-light scattering contribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا