ﻻ يوجد ملخص باللغة العربية
We define two ways of quantifying the quantum correlations based on quantum Fisher information (QFI) in order to study the quantum correlations as a resource in quantum metrology. By investigating the hierarchy of measurement-induced Fisher information introduced in Lu et al. [X. M. Lu, S. Luo, and C. H. Oh, Phys Rev. A 86, 022342 (2012)], we show that the presence of quantum correlation can be confirmed by the difference of the Fisher information induced by the measurements of two hierarchies. In particular, the quantitative quantum correlations based on QFI coincide with the geometric discord for pure quantum states.
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are ques
Given a quantum system on many qubits split into a few different parties, how much total correlations are there between these parties? Such a quantity -- aimed to measure the deviation of the global quantum state from an uncorrelated state with the s
In estimating an unknown parameter of a quantum state the quantum Fisher information (QFI) is a pivotal quantity, which depends on the state and its derivate with respect to the unknown parameter. We prove the continuity property for the QFI in the s
We show that both the classical as well as the quantum definitions of the Fisher information faithfully identify resourceful quantum states in general quantum resource theories, in the sense that they can always distinguish between states with and wi