ﻻ يوجد ملخص باللغة العربية
The state of the art performance of deep learning models comes at a high cost for companies and institutions, due to the tedious data collection and the heavy processing requirements. Recently, [35, 22] proposed to watermark convolutional neural networks for image classification, by embedding information into their weights. While this is a clear progress towards model protection, this technique solely allows for extracting the watermark from a network that one accesses locally and entirely. Instead, we aim at allowing the extraction of the watermark from a neural network (or any other machine learning model) that is operated remotely, and available through a service API. To this end, we propose to mark the models action itself, tweaking slightly its decision frontiers so that a set of specific queries convey the desired information. In the present paper, we formally introduce the problem and propose a novel zero-bit watermarking algorithm that makes use of adversarial model examples. While limiting the loss of performance of the protected model, this algorithm allows subsequent extraction of the watermark using only few queries. We experimented the approach on three neural networks designed for image classification, in the context of MNIST digit recognition task.
Training machine learning (ML) models is expensive in terms of computational power, amounts of labeled data and human expertise. Thus, ML models constitute intellectual property (IP) and business value for their owners. Embedding digital watermarks d
Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and the importance that DNNs are gaining in our society. Following its use for Mul
DNN watermarking is receiving an increasing attention as a suitable mean to protect the Intellectual Property Rights associated to DNN models. Several methods proposed so far are inspired to the popular Spread Spectrum (SS) paradigm according to whic
The rise of machine learning as a service and model sharing platforms has raised the need of traitor-tracing the models and proof of authorship. Watermarking technique is the main component of existing methods for protecting copyright of models. In t
In order to protect the intellectual property (IP) of deep neural networks (DNNs), many existing DNN watermarking techniques either embed watermarks directly into the DNN parameters or insert backdoor watermarks by fine-tuning the DNN parameters, whi