ﻻ يوجد ملخص باللغة العربية
Deep learning algorithms have been known to be vulnerable to adversarial perturbations in various tasks such as image classification. This problem was addressed by employing several defense methods for detection and rejection of particular types of attacks. However, training and manipulating networks according to particular defense schemes increases computational complexity of the learning algorithms. In this work, we propose a simple yet effective method to improve robustness of convolutional neural networks (CNNs) to adversarial attacks by using data dependent adaptive convolution kernels. To this end, we propose a new type of HyperNetwork in order to employ statistical properties of input data and features for computation of statistical adaptive maps. Then, we filter convolution weights of CNNs with the learned statistical maps to compute dynamic kernels. Thereby, weights and kernels are collectively optimized for learning of image classification models robust to adversarial attacks without employment of additional target detection and rejection algorithms. We empirically demonstrate that the proposed method enables CNNs to spontaneously defend against different types of attacks, e.g. attacks generated by Gaussian noise, fast gradient sign methods (Goodfellow et al., 2014) and a black-box attack(Narodytska & Kasiviswanathan, 2016).
This paper presents a DNN bottleneck reinforcement scheme to alleviate the vulnerability of Deep Neural Networks (DNN) against adversarial attacks. Typical DNN classifiers encode the input image into a compressed latent representation more suitable f
Deep neural networks (DNNs) are vulnerable to adversarial noise. Their adversarial robustness can be improved by exploiting adversarial examples. However, given the continuously evolving attacks, models trained on seen types of adversarial examples g
Many deep learning algorithms can be easily fooled with simple adversarial examples. To address the limitations of existing defenses, we devised a probabilistic framework that can generate an exponentially large ensemble of models from a single model
This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artefacts. In this work, smoothing has a different meaning as it perceptually shapes the perturbati
Modern neural networks excel at image classification, yet they remain vulnerable to common image corruptions such as blur, speckle noise or fog. Recent methods that focus on this problem, such as AugMix and DeepAugment, introduce defenses that operat