ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-Amplitude Longitudinal Oscillations Triggered by the Merging of Two Solar Filaments: Observations and Magnetic Field Analysis

415   0   0.0 ( 0 )
 نشر من قبل Manuel Luna
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We follow the eruption of two related intermediate filaments observed in H$alpha$ (from GONG) and in EUV (from SDO/AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In H$alpha$ the period decreases with time and exhibits strong damping. The analysis of 171~AA images shows that the oscillation has two phases, an initial long period phase and a subsequent oscillation with a shorter period. In this wavelength the damping appears weaker than in H$alpha$. The velocity is the largest ever detected in a prominence oscillation, approximately 100 $mathrm{, km , s^{-1}}$. Using SDO/HMI magnetograms we reconstruct the magnetic field of the filaments modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120~Mm, in agreement with the reconstructed field. In addition, we infer a field strength of $ge7$ to 30 gauss, depending on the electron density assumed; that is also in agreement with the values from the reconstruction (8-20 gauss). The poloidal flux is zero and the axis flux is of the order of 10$^{20}$ to 10$^{21}$ Mx, confirming the high shear existing even in a non-active filament.



قيم البحث

اقرأ أيضاً

257 - M. Luna , K. Knizhnik , K. Muglach 2014
On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.
204 - K. Knizhnik , M. Luna , K. Muglach 2013
On 20 August 2010 an energetic disturbance triggered damped large-amplitude longitudinal (LAL) oscillations in almost an entire filament. In the present work we analyze this periodic motion in the filament to characterize the damping and restoring me chanism of the oscillation. Our method involves placing slits along the axis of the filament at different angles with respect to the spine of the filament, finding the angle at which the oscillation is clearest, and fitting the resulting oscillation pattern to decaying sinusoidal and Bessel functions. These functions represent the equations of motion of a pendulum damped by mass accretion. With this method we determine the period and the decaying time of the oscillation. Our preliminary results support the theory presented by Luna and Karpen (2012) that the restoring force of LAL oscillations is solar gravity in the tubes where the threads oscillate, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Following an earlier paper, we have determined the magnitude and radius of curvature of the dipped magnetic flux tubes hosting a thread along the filament, as well as the mass accretion rate of the filament threads, via the fitted parameters.
110 - M. Luna , A. J. Diaz , 2012
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot cor onal regions on either side. We have found the normal modes of the system, and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes, and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
187 - L. Y. Zhang , C. Fang , P. F. Chen 2019
Longitudinal oscillations of solar filament have been investigated via numerical simulations continuously, but mainly in one dimension (1D), where the magnetic field line is treated as a rigid flux tube. Whereas those one-dimensional simulations can roughly reproduce the observed oscillation periods, implying that gravity is the main restoring force for filament longitudinal oscillations, the decay time in one-dimensional simulations is generally longer than in observations. In this paper, we perform a two-dimensional (2D) non-adiabatic magnetohydrodynamic simulation of filament longitudinal oscillations, and compare it with the 2D adiabatic case and 1D adiabatic and non-adiabatic cases. It is found that, whereas both non-adiabatic processes (radiation and heat conduction) can significantly reduce the decay time, wave leakage is another important mechanism to dissipate the kinetic energy of the oscillating filament when the magnetic field is weak so that gravity is comparable to Lorentz force. In this case, our simulations indicate that the pendulum model might lead to an error of ~100% in determining the curvature radius of the dipped magnetic field using the longitudinal oscillation period when the gravity to Lorentz force ratio is close to unity.
The weak-field approximation implying linear relationship between Stokes $V/I$ and longitudinal magnetic field, $B_{Vert}$, often suffers from saturation observed in strong magnetic field regions such as sunspot umbra. In this work, we intend to impr ove the magnetic field observations carried out by the Solar Magnetic Field Telescope (SMFT) at the Huairou Solar Observing Station, China. We propose using non-linear relationship between Stokes $V/I$ and $B_{Vert}$ to derive magnetic field. To determine the form of the relationship, we perform a cross-calibration of SMFT data and magnetograms provided by the textit{Helioseismic and Magnetic Imager} on board the textit{Solar Dynamics Observatory}. The algorithm of the magnetic field derivation is described in details. We show that using non-linear relationship between Stokes $V/I$ and $B_{Vert}$ allows us to eliminate magnetic field saturation inside sunspot umbra. The proposed technique enables one to enhance the reliability of the SMFT magnetic field data obtained even long before the space-based instrumentation era, since 1987.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا