ﻻ يوجد ملخص باللغة العربية
We present the predictions of the SuSAv2-MEC model for the double differential charged-current muonic neutrino (antineutrino) cross section on water for the T2K neutrino (antineutrino) beam. We validate our model by comparing with the available inclusive electron scattering data on oxygen and compare our predictions with the recent T2K $ u_mu$-$^{16}$O data, finding good agreement at all kinematics. We show that the results are very similar to those obtained for $ u_mu-^{12}$C scattering, except at low energies, and we comment on the origin of this difference. A factorized spectral function model of $^{16}$O is also included for purposes of comparison.
We use a recent scaling analysis of the quasielastic electron scattering data from $^{12}$C to predict the quasielastic charge-changing neutrino scattering cross sections within an uncertainty band. We use a scaling function extracted from a selectio
We develop a model of relativistic, charged meson-exchange currents (MEC) for neutrino-nucleus interactions. The two-body current is the sum of seagull, pion-in-flight, pion-pole and $Delta$-pole operators. These operators are obtained from the weak
The analysis of quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions (FSI). In the relativistic Greens function (RGF) model FS
We study coherent pion production in neutrino-nucleus scattering in the energy region relevant to neutrino oscillation experiments of current interest. Our approach is based on a combined use of the Sato-Lee model of electroweak pion production on a
The superscaling properties of electron scattering data are used to extract model-independent predictions for neutrino-nucleus cross sections.