ﻻ يوجد ملخص باللغة العربية
We perform a glueball-relevant study on isoscalars based on anisotropic $N_f=2$ lattice QCD gauge configurations. In the scalar channel, we identify the ground state obtained through gluonic operators to be a single-particle state through its dispersion relation. When $qbar{q}$ operator is included, we find the mass of this state does not change, and the $qbar{q}$ operator couples very weakly to this state. So this state is most likely a glueball state. For pseudoscalars, along with the exiting lattice results, our study implies that both the conventional $qbar{q}$ state $eta_2$ (or $eta$ in flavor $SU(3)$) and a heavier glueball-like state with a mass of roughly 2.6 GeV exist in the spectrum of lattice QCD with dynamical quarks.
The lowest-lying glueballs are investigated in lattice QCD using $N_f=2$ clover Wilson fermion on anisotropic lattices. We simulate at two different and relatively heavy quark masses, corresponding to physical pion mass of $m_pisim 938$ MeV and $650$
We present the first-ever lattice computation of pi pi-scattering in the I=1 channel with Nf=2 dynamical quark flavours obtained including an ensemble with physical value of the pion mass. Employing a global fit to data at three values of the pion ma
We compute various (generalized) isovector charges of the octet baryons. These include $g_A$, $g_T$ and $g_S$ as well as the unpolarized, polarized and transversity parton distribution function (PDF) momentum fractions $langle xrangle_{u^+-d^+}$, $la
We compute the axial, scalar, tensor and pseudoscalar isovector couplings of the nucleon as well as the induced tensor and pseudoscalar charges in lattice simulations with $N_f=2$ mass-degenerate non-perturbatively improved Wilson-Sheikholeslami-Wohl
We use a variational technique to study heavy glueballs on gauge configurations generated with 2+1 flavours of ASQTAD improved staggered fermions. The variational technique includes glueball scattering states. The measurements were made using 2150 co