ﻻ يوجد ملخص باللغة العربية
We examine how the average of double-winding Wilson loops depends on the number of color $N$ in the $SU(N)$ Yang-Mills theory. In the case where the two loops $C_1$ and $C_2$ are identical, we derive the exact operator relation which relates the double-winding Wilson loop operator in the fundamental representation to that in the higher dimensional representations depending on $N$. By taking the average of the relation, we find that the difference-of-areas law for the area law falloff recently claimed for $N=2$ is excluded for $N geq 3$, provided that the string tension obeys the Casimir scaling for the higher representations. In the case where the two loops are distinct, we argue that the area law follows a novel law $(N - 3)A_1/(N-1)+A_2$ with $A_1$ and $A_2 (A_1<A_2)$ being the minimal areas spanned respectively by the loops $C_1$ and $C_2$, which is neither sum-of-areas ($A_1+A_2$) nor difference-of-areas ($A_2 - A_1$) law when ($Ngeq3$). Indeed, this behavior can be confirmed in the two-dimensional $SU(N)$ Yang-Mills theory exactly.
We consider double-winding, triple-winding and multiple-winding Wilson loops in the $SU(N)$ Yang-Mills gauge theory. We examine how the area law falloff of the vacuum expectation value of a multiple-winding Wilson loop depends on the number of color
Color confinement is the most puzzling phenomenon in the theory of strong interaction based on a quantum SU(3) Yang-Mills theory. The origin of color confinement supposed to be intimately related to non-perturbative features of the non-Abelian gauge
We show that, starting from known exact classical solutions of the Yang-Mills theory in three dimensions, the string tension is obtained and the potential is consistent with a marginally confining theory. The potential we obtain agrees fairly well wi
The N=2* Super-Yang-Mills theory (SYM*) undergoes an infinite sequence of large-N quantum phase transitions. We compute expectation values of Wilson loops in k-symmetric and antisymmetric representations of the SU(N) gauge group in this theory and sh
Using holography we have studied the time-dependent potential of a quark-antiquark pair in a dynamical strongly coupled plasma. The time-dependent plasma, whose dynamics is originated from the energy injection, is dual to AdS-Vaidya background. The q