ﻻ يوجد ملخص باللغة العربية
In standard accretion discs, outward angular momentum transfer by viscous forces is compensated by the inward motion of the accreting matter. However, the vertical structure of real accretion discs leads to meridional circulation with comparable amplitudes of poloidal velocities. Using thin-disc approximation, we consider different regimes of disc accretion with different vertical viscosity scalings. We show that, while gas-pressure-dominated discs can easily have a midplane outflow, standard thin radiation-pressure-dominated disc is normally moving inwards at all the heights. However, quasi-spherical scaling for pressure ($ppropto varpi^{-5/2}$) leads to a midplane outflow for a very broad range of parameters. It particular, this may lead to a reversed, outward heat advection in geometrically thick discs when the temperature decreases rapidly enough with height. While the overall direction of heat advection depends on the unknown details of vertical structure and viscosity mechanisms, existence of the midplane counterflow in quasi-spherical flows is a robust result weakly dependent on the parameters and the assumptions of the model. Future models of thick radiatively inefficient flows should take meridional circulation into account.
Radial transport of particles, elements and fluid driven by internal stresses in three-dimensional (3D) astrophysical accretion disks is an important phenomenon, potentially relevant for the outward dust transport in protoplanetary disks, origin of t
Context. Quasi-periodic variability has been observed in a number of X-ray binaries harboring black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curv
Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the glob
A key component of solar interior dynamics is the meridional circulation (MC), whose poleward component in the surface layers has been well observed. Time-distance helioseismic studies of the deep structure of MC, however, have yielded conflicting in
Using a 3D global solver of the linearized Euler equations, we model acoustic oscillations over background velocity flow fields of single-cell meridional circulation with deep and shallow return flows as well as a double-cell meridional circulation p