ﻻ يوجد ملخص باللغة العربية
A fundamental problem arising in dense wireless networks is the high co-channel interference. Interference alignment (IA) was recently proposed as an effective way to combat interference in wireless networks. The concept of IA, though, is originated by the capacity study of interference channels and as such, its performance is mainly gauged under ideal assumptions, such as instantaneous and perfect channel state information (CSI) at all nodes, and homogeneous signal-to-noise ratio (SNR) users, i.e., each user has the same average SNR. Consequently, the performance of IA under realistic conditions has not been completely investigated yet. In this paper, we aim at filling this gap by providing a performance assessment of spatial IA in practical systems. Specifically, we derive a closed-form expression for the IA average sum-rate when CSI is acquired through training and users have heterogeneous SNR. A main insight from our analysis is that IA can indeed provide significant spectral efficiency gains over traditional approaches in a wide range of dense network scenarios. To demonstrate this, we consider the examples of linear, grid and random network topologies.
In this paper, we analytically derive an upper bound on the error in approximating the uplink (UL) single-cell interference by a lognormal distribution in frequency division multiple access (FDMA) small cell networks (SCNs). Such an upper bound is me
In this paper, for the first time, we analytically prove that the uplink (UL) inter-cell interference in frequency division multiple access (FDMA) small cell networks (SCNs) can be well approximated by a lognormal distribution under a certain conditi
This invited paper presents some novel ideas on how to enhance the performance of consensus algorithms in distributed wireless sensor networks, when communication costs are considered. Of particular interest are consensus algorithms that exploit the
Security is a critical issue in full duplex (FD) communication systems due to the broadcast nature of wireless channels. In this paper, joint design of information and artificial noise beamforming vectors is proposed for the FD simultaneous wireless
Recent results establish the optimality of interference alignment to approach the Shannon capacity of interference networks at high SNR. However, the extent to which interference can be aligned over a finite number of signalling dimensions remains un