ترغب بنشر مسار تعليمي؟ اضغط هنا

Some Carleson measures for the Hilbert-Hardy space of tube domains over symmetric cones

83   0   0.0 ( 0 )
 نشر من قبل Benoit Florent Sehba
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we obtain a full characterization of radial Carleson measures for the Hilbert-Hardy space on tube domains over symmetric cones. For large derivatives, we also obtain a full characterization of the measures for which the corresponding embedding operator is continuous. Restricting to the case of light cones of dimension three, we prove that by freezing one or two variables, the problem of embedding derivatives of the Hilbert-Hardy space into Lebesgue spaces reduces to the characterization of Carleson measures for Hilbert-Bergman spaces of the upper-half plane or the product of two upper-half planes.



قيم البحث

اقرأ أيضاً

We prove Carleson embeddings for Bergman spaces of tube domains over symmetric cones, we apply them to characterize symbols of bounded Ces`aro-type operators from weighted Bergman spaces to weighted Besov spaces. We also obtain Schatten class criteri a of Toeplitz operators and Ces`aro-type operators on weighted Hilbert-Bergman spaces.
We obtain some necessary and sufficient conditions for the boundedness of a family of positive operators defined on symmetric cones, we then deduce off-diagonal boundedness of associated Bergman-type operators in tube domains over symmetric cones.
366 - Benoit F. Sehba 2016
We give in this paper some equivalent definitions of the so called $rho$-Carleson measures when $rho(t)=(log(4/t))^p(loglog(e^4/t))^q$, $0le p,q<infty$. As applications, we characterize the pointwise multipliers on $LMOA(mathbb S^n)$ and from this sp ace to $BMOA(mathbb S^n)$. Boundedness of the Ces`aro type integral operators on $LMOA(mathbb S^n)$ and from $LMOA(mathbb S^n)$ to $BMOA(mathbb S^n)$ is considered as well.
We characterize bounded Toeplitz and Hankel operators from weighted Bergman spaces to weighted Besov spaces in tube domains over symmetric cones. We deduce weak factorization results for some Bergman spaces of this setting.
In this paper we characterize off-diagonal Carleson embeddings for both Hardy-Orlicz spaces and Bergman-Orlicz spaces of the upper-half plane. We use these results to obtain embedding relations and pointwise multipliers between these spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا