ﻻ يوجد ملخص باللغة العربية
We prove the existence of a one-parameter family of nondisplaceable Lagrangian tori near a linear chain of Lagrangian 2-spheres in a symplectic 4-manifold. When the symplectic structure is rational we prove that the deformed Floer cohomology groups of these tori are nontrivial. The proof uses the idea of toric degeneration to analyze the full potential functions with bulk deformations of these tori.
Fix a symplectic K3 surface X homologically mirror to an algebraic K3 surface Y by an equivalence taking a graded Lagrangian torus L in X to the skyscraper sheaf of a point y of Y. We show there are Lagrangian tori with vanishing Maslov class in X wh
A Kahler-type form is a symplectic form compatible with an integrable complex structure. Let M be a either a torus or a K3-surface equipped with a Kahler-type form. We show that the homology class of any Maslov-zero Lagrangian torus in M has to be no
In recent papers, summarized in survey [1], we construct a number of examples of non standard lagrangian tori on compact toric varieties and as well on certain non toric varieties which admit pseudotoric structures. Using this pseudotoric technique w
The convolution ring $K^{GL_n(mathcal{O})rtimesmathbb{C}^times}(mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, J. Amer. Math. Soc. 32 (2019), pp. 709-778]. We identify the basis formed
We study a cylindrical Lagrangian cobordism group for Lagrangian torus fibres in symplectic manifolds which are the total spaces of smooth Lagrangian torus fibrations. We use ideas from family Floer theory and tropical geometry to obtain both obstruc