ﻻ يوجد ملخص باللغة العربية
We consider the class of quantum stochastic evolutions ($SLH$-models) leading to a quantum dynamical semigroup over a fixed quantum mechanical system (taken to be finite-dimensional). We show that if the semigroup is dissipative, that is, the coupling operators are non-zero, then a dynamical decoupling scheme based on unitary rotations on the system space cannot suppress decoherence even in the limit where the period between pulses vanishes. We emphasize the role of the Fock space dilation used here to construct a quantum stochastic model, as there are often dilations of the same semigroup using an environmental noise model of lower level of chaoticity for which dynamical decoupling is effective. We show that the Chebotarev-Gregoratti Hamiltonian behind a quantum stochastic evolution is an example of a Hamiltonian dynamics on a joint system-environment that cannot be dynamically decoupled in this way.
Dynamical decoupling is the leading technique to remove unwanted interactions in a vast range of quantum systems through fast rotations. But what determines the time-scale of such rotations in order to achieve good decoupling? By providing an explici
Permutational Quantum Computing (PQC) [emph{Quantum~Info.~Comput.}, textbf{10}, 470--497, (2010)] is a natural quantum computational model conjectured to capture non-classical aspects of quantum computation. An argument backing this conjecture was th
We establish a theoretical understanding of the entanglement properties of a physical system that mediates a quantum information splitting protocol. We quantify the different ways in which an arbitrary $n$ qubit state can be split among a set of $k$
A cornerstone of quantum mechanics is the characterisation of symmetries provided by Wigners theorem. Wigners theorem establishes that every symmetry of the quantum state space must be either a unitary transformation, or an antiunitary transformation
The extraction of information from a quantum system unavoidably implies a modification of the measured system itself. It has been demonstrated recently that partial measurements can be carried out in order to extract only a portion of the information