ﻻ يوجد ملخص باللغة العربية
We study the energy-momentum tensor and the equation of state as well as the chiral condensate in (2+1)-flavor QCD at the physical point applying the method of Makino and Suzuki based on the gradient flow. We adopt a nonperturbatively O(a)-improved Wilson quark action and the renormalization group-improved Iwasaki gauge action. At Lattice 2016, we have presented our preliminary results of our study in (2+1)-flavor QCD at a heavy u, d quark mass point. We now extend the study to the physical point and perform finite-temperature simulations in the range T simeq 155--544 MeV (Nt = 4--14 including odd Nts) at a simeq 0.09 fm. We show our final results of the heavy QCD study and present some preliminary results obtained at the physical point so far.
We study thermodynamic properties of 2+1 flavor QCD applying the Small Flow-time eXpansion (SFtX) method based on the gradient flow. The method provides us with a general way to compute correctly renormalized observables irrespective of explicit viol
The energy-momentum tensor and equation of state are studied in finite-temperature (2+1)-flavor QCD with improved Wilson quarks using the method proposed by Makino and Suzuki based on the gradient flow. We find that the results of the gradient flow a
We study the (2+1)-flavor QCD at nonzero temperatures using nonperturbatively improved Wilson quarks of the physical masses by the fixed scale approach. We perform physical point simulations at finite temperatures with the coupling parameters which w
We study the equation of state in 2+1 flavor QCD with nonperturbatively improved Wilson quarks coupled with the RG-improved Iwasaki glue. We apply the $T$-integration method to nonperturbatively calculate the equation of state by the fixed-scale appr
We study the equation of state in two-flavor QCD at finite temperature and density. Simulations are made with the RG-improved gluon action and the clover-improved Wilson quark action. Along the lines of constant physics for $m_{rm PS}/m_{rm V} = 0.65