ﻻ يوجد ملخص باللغة العربية
We consider a system of $N$ bosons interacting through a singular two-body potential scaling with $N$ and having the form $N^{3beta-1} V (N^beta x)$, for an arbitrary parameter $beta in (0,1)$. We provide a norm-approximation for the many-body evolution of initial data exhibiting Bose-Einstein condensation in terms of a cubic nonlinear Schrodinger equation for the condensate wave function and of a unitary Fock space evolution with a generator quadratic in creation and annihilation operators for the fluctuations.
In this paper, classical small perturbations against a stationary solution of the nonlinear Schrodinger equation with the general form of nonlinearity are examined. It is shown that in order to obtain correct (in particular, conserved over time) nonz
We prove spatiotemporal algebraically decaying estimates for the density of the solutions of the linearly damped nonlinear Schrodinger equation with localized driving, when supplemented with vanishing boundary conditions. Their derivation is made via
In this paper we consider stationary solutions to the nonlinear one-dimensional Schroedinger equation with a periodic potential and a Stark-type perturbation. In the limit of large periodic potential the Stark-Wannier ladders of the linear equation b
The dynamics of any classical-mechanics system can be formulated in the reparametrization-invariant (RI) form (that is we use the parametric representation for trajectories, ${bf x}={bf x}(tau)$, $t=t(tau)$ instead of ${bf x}={bf x}(t)$). In this ped
Utilization of a quantum system whose time-development is described by the nonlinear Schrodinger equation in the transformation of qubits would make it possible to construct quantum algorithms which would be useful in a large class of problems. An ex