ﻻ يوجد ملخص باللغة العربية
In the setting of finite type invariants for null-homologous knots in rational homology 3-spheres with respect to null Lagrangian-preserving surgeries, there are two candidates to be universal invariants, defined respectively by Kricker and Lescop. In a previous paper, the second author defined maps between spaces of Jacobi diagrams. Injectivity for these maps would imply that Kricker and Lescop invariants are indeed universal invariants; this would prove in particular that these two invariants are equivalent. In the present paper, we investigate the injectivity status of these maps for degree 2 invariants, in the case of knots whose Blanchfield modules are direct sums of isomorphic Blanchfield modules of Q-dimension two. We prove that they are always injective except in one case, for which we determine explicitly the kernel.
Suppose that $n eq p^k$ and $n eq 2p^k$ for all $k$ and all primes $p$. We prove that for any Hausdorff compactum $X$ with a free action of the symmetric group $mathfrak S_n$ there exists an $mathfrak S_n$-equivariant map $X to {mathbb R}^n$ whose im
In mathematics there is a wide class of knot invariants that may be expressed in the form of multiple line integrals computed along the trajectory C describing the spatial conformation of the knot. In this work it is addressed the problem of evaluati
We present a simple proof for the universality of invariant and equivariant tensorized graph neural networks. Our approach considers a restricted intermediate hypothetical model named Graph Homomorphism Model to reach the universality conclusions inc
In this paper, we study the geometry of surfaces with the generalised simple lift property. This work generalises previous results by Bernstein and Tinaglia, and it is motivated by the fact that leaves of a minimal lamination obtained as a limit of a
In studying the 11/8-Conjecture on the Geography Problem in 4-dimensional topology, Furuta proposed a question on the existence of Pin(2)-equivariant stable maps between certain representation spheres. In this paper, we present a complete solution to