ﻻ يوجد ملخص باللغة العربية
The atomic numbers and the masses of fragments formed in quasi-fission reactions have been simultaneously measured at scission in 48 Ti + 238 U reactions at a laboratory energy of 286 MeV. The atomic numbers were determined from measured characteristic fluorescence X-rays whereas the masses were obtained from the emission angles and times of flight of the two emerging fragments. For the first time, thanks to this full identification of the quasi-fission fragments on a broad angular range, the important role of the proton shell closure at Z = 82 is evidenced by the associated maximum production yield, a maximum predicted by time dependent Hartree-Fock calculations. This new experimental approach gives now access to precise studies of the time dependence of the N/Z (neutron over proton ratios of the fragments) evolution in quasi-fission reactions.
Mass distributions of the fragments in the fission of $^{206}$Po and the N=126 neutron shell closed nucleus $^{210}$Po have been measured. No significant deviation of mass distributions has been found between $^{206}$Po and $^{210}$Po, indicating the
Presence of closed proton and/or neutron shells causes deviation from macroscopic properties of nuclei which are understood in terms of the liquid drop model. It is important to investigate experimentally the stabilizing effects of shell closure, if
The fission fragment mass distributions have been measured in the reactions 16O + 184W and 19F+ 181Ta populating the same compound nucleus 200Pb? at similar excitation energies. It is found that the widths of the mass distribution increases monotonic
The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the
The simultaneous measurement of the isotopic fission-fragment yields and fission-fragment velocities of $^{239}$U has been performed for the first time. The $^{239}$U fissioning system was produced in one-neutron transfer reactions between a $^{238}$