ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of final-state radiation on heavy-flavour observables in pp collisions

127   0   0.0 ( 0 )
 نشر من قبل Luuk Vermunt
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The influence of final-state radiation (FSR) of heavy quarks on observables in high-energy proton-proton collisions is studied. The transverse momentum correlation of D and Dbar mesons, which have been emitted with an azimuthal difference angle close to 180 degrees, is identified as an observable which is sensitive to the FSR process. We demonstrate this by performing calculations with the EPOS3+HQ model and with the event generator Pythia 6. The initial symmetric pT = pT correlation for back-to-back pairs does not completely vanish in EPOS3+HQ, neither for the final DDbar pairs nor for the ccbar pairs before hadronisation. Also a significant difference in the shape of the correlation distribution for EPOS3+HQ and Pythia 6 is observed. Therefore, particle correlations in pp data offer the possibility to study several aspects of energy loss in heavy-ion collisions.



قيم البحث

اقرأ أيضاً

Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most importa nt such effect. In small systems like those created in e+e- or p+p collisions, the so-called Gamow factor (valid for a point-like particle source) gives an acceptable description of the Coulomb interaction. However, in larger systems such as central or mid-central heavy ion collisions, more involved approaches are needed. In this paper we investigate the Coulomb final state interaction for Levy-type source functions that were recently shown to be of much interest for a refined description of the space-time picture of particle production in heavy-ion collisions.
The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found to be a sensitive probe of this potential. Here we utilize a previously developed quarkonium transport approach in combination with insights from open HF diffusion to extract the color-singlet potential from experimental results on $Upsilon$ production in URHICs. Starting from a parameterized trial potential, we evaluate the $Upsilon$ transport parameters and conduct systematic fits to available data for the centrality dependence of ground and excited states at RHIC and the LHC. The best fits and their statistical significance are converted into a temperature-dependent potential. Including nonperturbative effects in the dissociation rate guided from open HF phenomenology, we extract a rather strongly coupled potential with substantial remnants of the long-range confining force in the QGP.
We present results of an updated calculation of the 2p2h (two particle two hole) contribution to the neutrino-induced charge-current cross section. We provide also some exclusive observables, interesting from the point of view of experimental studies , e.g. distributions of momenta of the outgoing nucleons and of available energy, which we compare with the results obtained within the NEUT generator. We also compute, and separate from the total, the contributions of 3p3h mechanisms. Finally, we discuss the differences between the present results and previous implementations of the model in MC event-generators, done at the level of inclusive cross sections, which might significantly influence the experimental analyses, particularly in the cases where the hadronic observables are considered.
160 - Meijuan Wang , Lianshou Liu , 2008
In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested. From the simulation of Au + Au collisions at 200 GeV by using the Monte Carlo models RQMD with hadron re-scattering and AMPT with and without string melting, we observe that the correlation patterns change gradually from out-of-plane preferential one to in-plane preferential one when the centrality of collision shifts from central to peripheral, meanwhile the anisotropic collective flow v_2 keeps positive in all cases. This regularity is found to be model and collision energy independent. The physics behind the two opposite trends of correlation patterns, in particular, the presence of out-of-plane correlation patterns at RHIC energy, are discussed.
We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio eta/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in sqrt (s_NN) = 200 GeV Au+Au collisions at RHIC is dominated by the viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP viscosity and insensitive to the hadronic viscosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا