ﻻ يوجد ملخص باللغة العربية
The influence of final-state radiation (FSR) of heavy quarks on observables in high-energy proton-proton collisions is studied. The transverse momentum correlation of D and Dbar mesons, which have been emitted with an azimuthal difference angle close to 180 degrees, is identified as an observable which is sensitive to the FSR process. We demonstrate this by performing calculations with the EPOS3+HQ model and with the event generator Pythia 6. The initial symmetric pT = pT correlation for back-to-back pairs does not completely vanish in EPOS3+HQ, neither for the final DDbar pairs nor for the ccbar pairs before hadronisation. Also a significant difference in the shape of the correlation distribution for EPOS3+HQ and Pythia 6 is observed. Therefore, particle correlations in pp data offer the possibility to study several aspects of energy loss in heavy-ion collisions.
Investigation of momentum space correlations of particles produced in high energy reactions requires taking final state interactions into account, a crucial point of any such analysis. Coulomb interaction between charged particles is the most importa
The in-medium color potential is a fundamental quantity for understanding the properties of the strongly coupled quark-gluon plasma (sQGP). Open and hidden heavy-flavor (HF) production in ultrarelativistic heavy-ion collisions (URHICs) has been found
We present results of an updated calculation of the 2p2h (two particle two hole) contribution to the neutrino-induced charge-current cross section. We provide also some exclusive observables, interesting from the point of view of experimental studies
In order to trace the initial interaction in ultra-relativistic heavy ion collision in all azimuthal directions, two azimuthal multiplicity-correlation patterns -- neighboring and fixed-to-arbitrary angular-bin correlation patterns -- are suggested.
We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio eta/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in sqrt