ﻻ يوجد ملخص باللغة العربية
This paper deals with the maximum likelihood estimator for the mean-reverting parameter of a first order autoregressive models with exogenous variables, which are stationary Gaussian noises (Colored noise). Using the method of the Laplace transform, both the asymptotic properties and the asymptotic design problem of the maximum likelihood estimator are investigated. The numerical simulation results confirm the theoretical analysis and show that the proposed maximum likelihood estimator performs well in finite sample.
In this paper, we consider an inference problem for the first order autoregressive process driven by a long memory stationary Gaussian process. Suppose that the covariance function of the noise can be expressed as $abs{k}^{2H-2}$ times a function slo
We consider the semi-parametric estimation of a scale parameter of a one-dimensional Gaussian process with known smoothness. We suggest an estimator based on quadratic variations and on the moment method. We provide asymptotic approximations of the m
In this paper we are interested in the Maximum Likelihood Estimator (MLE) of the vector parameter of an autoregressive process of order $p$ with regular stationary Gaussian noise. We exhibit the large sample asymptotical properties of the MLE under v
This paper investigates the property of the penalized estimating equations when both the mean and association structures are modelled. To select variables for the mean and association structures sequentially, we propose a hierarchical penalized gener
We discuss the possibilities and limitations of estimating the mean of a real-valued random variable from independent and identically distributed observations from a non-asymptotic point of view. In particular, we define estimators with a sub-Gaussia