ﻻ يوجد ملخص باللغة العربية
We present a comprehensive and precise description of the Sagittarius (Sgr) stellar streams 3D geometry as traced by its old stellar population. This analysis draws on the sample of ${sim}44,000$ RR Lyrae (RRab) stars from the Pan-STARRS1 (PS1) 3$pi$ survey (Hernitschek et al. 2016,Sesar et al. 2017b), which is ${sim}80%$ complete and ${sim}90%$ pure within 80~kpc, and extends to ${gtrsim} 120$~kpc with a distance precision of ${sim} 3%$. A projection of RR Lyrae stars within $|tilde{B}|_{odot}<9^circ$ of the Sgr streams orbital plane reveals the morphology of both the leading and the trailing arms at very high contrast, across much of the sky. In particular, the map traces the stream near-contiguously through the distant apocenters. We fit a simple model for the mean distance and line-of-sight depth of the Sgr stream as a function of the orbital plane angle $tilde{Lambda}_{odot}$, along with a power-law background-model for the field stars. This modeling results in estimates of the mean stream distance precise to ${sim}1%$ and it resolves the streams line-of-sight depth. These improved geometric constraints can serve as new constraints for dynamical stream models.
We characterize the spatial density of the Pan-STARRS1 (PS1) sample of RR Lyrae stars, to study the properties of the old Galactic stellar halo as traced by RRab stars. This sample of 44,403 sources spans Galactocentric radii of $0.55 ; mathrm{kpc} l
We present new spatial models and distance estimates for globular clusters (GC) and dwarf spheroidals (dSphs) orbiting our Galaxy based on RR Lyrae (RRab) stars in the Pan-STARRS1 (PS1) 3$pi$ survey. Using the PS1 sample of RRab stars from Sesar et a
The Sagittarius stream is one of the best tools that we currently have to estimate the mass and shape of our Galaxy. However, assigning membership and obtaining the phase-space distribution of the stars that form the tails is quite challenging. Our g
We have measured radial velocities and metallicities of 16 RR Lyrae stars, from the QUEST survey, in the Sagittarius tidal stream at 50 kpc from the galactic center. The distribution of velocities is quite narrow (std dev=25 km/s) indicating that the
Sixteen RR Lyrae variables from the QUEST survey that lie in the leading arm of the tidal stream from the Sagittarius dSph galaxy have been observed spectroscopically to measure their radial velocities and metal abundances. The systemic velocities of