Melting and freeze-out conditions of hadrons in a thermal medium


الملخص بالإنكليزية

We describe two independent frameworks which provide unambiguous determinations of the deconfinement and the decoupling conditions of a relativistic gas at finite temperature. First, we use the Polyakov-Nambu-Jona-Lasinio model to compute meson and baryon masses at finite temperature and determine their melting temperature as a function of their strangeness content. Second, we analyze a simple expanding gas within a Friedmann-Robertson-Walker metric, which admits a well-defined decoupling mechanism. We examine the decoupling time as a function of the particle mass and cross section. We find evidences of an inherent dependence of the hadronization and freeze-out conditions on flavor, and on mass and cross section, respectively.

تحميل البحث