ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Spatially Resolved Star Formation History in M51 I: Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

104   0   0.0 ( 0 )
 نشر من قبل Rafael T. Eufrasio
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Lightning, a new spectral energy distribution (SED) fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. Lightning consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive FUV-to-FIR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the last 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover a SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51, and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars, and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.



قيم البحث

اقرأ أيضاً

We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star-formation event. We first utilize detailed stellar population synthesis modeling of far-UV to fa r-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star-formation histories (SFHs) on subgalactic (~400 pc) scales. Next, we use the ~850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star-formation rate [SFR] per stellar mass [M*] and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age. Our best-fit model indicates the XRB XLF per unit stellar mass declines in normalization, by ~3-3.5 dex, and steepens in slope from ~10 Myr to ~10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how the XRB XLF evolves with age.
The combination of both contributions from the observed UV emission and the absorbed radiations reprocessed in the infrared represents the ideal approach to constrain the activity of massive star formation in galaxies. Using recent results from GALEX and Spitzer, we compare the evolutions of the UV and IR energy densities with redshift as well as their contributions to the star formation history at 0<z<1. We find that the comoving IR luminosity is characterized by a much faster evolution than seen in the UV. Our results also indicate that ~70% of the star-forming activity at z~1 is produced by the so-called IR-luminous sources (L_IR > 10^11 L_sol).
We present a new method to determine the star formation and metal enrichment histories of any resolved stellar system. This method is based on the fact that any observed star in a colour-magnitude diagram will have a certain probability of being asso ciated with an isochrone characterised by an age t and metallicity [Fe/H] (i.e. to have formed at the time and with the metallicity of that isochrone). We formulate this as a maximum likelihood problem that is then solved with a genetic algorithm. We test the method with synthetic simple and complex stellar populations. We also present tests using real data for open and globular clusters. We are able to determine parameters for the clusters (t, [Fe/H]) that agree well with results found in the literature. Our tests on complex stellar populations show that we can recover the star formation history and age-metallicity relation very accurately. Finally, we look at the history of the Carina dwarf galaxy using deep BVI data. Our results compare well with what we know about the history of Carina.
We present deep Hubble Space Telescope Advanced Camera for Surveys observations of the stellar populations in two fields lying at 20 and 23 kpc from the centre of M31 along the south-west semi-major axis. These data enable the construction of colour- magnitude diagrams reaching the oldest main-sequence turn-offs (~13 Gyr) which, when combined with another field at 25 kpc from our previous work, we use to derive the first precision constraints on the spatially-resolved star formation history of the M31 disc. The star formation rates exhibit temporal as well as field-to-field variations, but are generally always within a factor of two of their time average. There is no evidence of inside-out growth over the radial range probed. We find a median age of ~7.5 Gyr, indicating that roughly half of the stellar mass in the M31 outer disc was formed before z ~ 1. We also find that the age-metallicity relations (AMRs) are smoothly increasing from [Fe/H]~-0.4 to solar metallicity between 10 and 3 Gyr ago, contrary to the flat AMR of the Milky Way disc at a similar number of scale lengths. Our findings provide insight on the roles of stellar feedback and radial migration in the formation and evolution of large disc galaxies.
110 - D. Calzetti 2017
We investigate the relation between gas and star formation in sub-galactic regions, ~360 pc to ~1.5 kpc in size, within the nearby starburst dwarf NGC4449, in order to separate the underlying relation from the effects of sampling at varying spatial s cales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8-500 micron from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our mm (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) [and F(160)/F(1100)] and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR-molecular gas and the SFR-total gas relations in NGC4449. We find that the SFR-molecular gas relation is described by a power law with exponent that decreases from ~1.5 to ~1.2 for increasing region size, while the exponent of the SFR-total gas relation remains constant with value ~1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a non-linear relation between SFR and gas surface density in NGC4449, similar to what is observed for galaxy samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا