Properties of equilibrated nucleon system are studied within the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport model. The UrQMD calculations are done within a finite box with periodic boundary conditions. The system achieves thermal equilibrium due to nucleon-nucleon elastic scattering. For the UrQMD equilibrium state, nucleon energy spectra, equation of state, particle number fluctuations, and shear viscosity $eta$ are calculated. The UrQMD results are compared with both, statistical mechanics and Chapman-Enskog kinetic theory, for a classical system of nucleons with hard-core repulsion.