ﻻ يوجد ملخص باللغة العربية
Pipelined algorithms implemented in field programmable gate arrays are being extensively used for hardware triggers in the modern experimental high energy physics field and the complexity of such algorithms are increases rapidly. For development of such hardware triggers, algorithms are developed in $texttt{C++}$, ported to hardware description language for synthesizing firmware, and then ported back to $texttt{C++}$ for simulating the firmware response down to the single bit level. We present a $texttt{C++}$ software framework which automatically simulates and generates hardware description language code for pipelined arithmetic algorithms.
We review some of the basic principles, fundamentals, technologies, architectures and recent advances leading to thefor the implementation of Field Programmable Photonic Field Arrays (FPPGAs).
Computational ghost imaging is a promising technique for single-pixel imaging because it is robust to disturbance and can be operated over broad wavelength bands, unlike common cameras. However, one disadvantage of this method is that it has a long c
This paper proposes the implementation of programmable threshold logic gate (TLG) crossbar array based on modified TLG cells for high speed processing and computation. The proposed TLG array operation does not depend on input signal and time pulses,
The impending termination of Moores law motivates the search for new forms of computing to continue the performance scaling we have grown accustomed to. Among the many emerging Post-Moore computing candidates, perhaps none is as salient as the Field-
We describe the technological concept and the first-light results of a 1024-channel spectrometer based on field programmable gate array (FPGA) hardware. This spectrometer is the prototype for the seven beam L-band receiver to be installed at the Effe