ﻻ يوجد ملخص باللغة العربية
The maximum size, $La(n,P)$, of a family of subsets of $[n]={1,2,...,n}$ without containing a copy of $P$ as a subposet, has been intensively studied. Let $P$ be a graded poset. We say that a family $mathcal{F}$ of subsets of $[n]={1,2,...,n}$ contains a emph{rank-preserving} copy of $P$ if it contains a copy of $P$ such that elements of $P$ having the same rank are mapped to sets of same size in $mathcal{F}$. The largest size of a family of subsets of $[n]={1,2,...,n}$ without containing a rank-preserving copy of $P$ as a subposet is denoted by $La_{rp}(n,P)$. Clearly, $La(n,P) le La_{rp}(n,P)$ holds. In this paper we prove asymptotically optimal upper bounds on $La_{rp}(n,P)$ for tree posets of height $2$ and monotone tree posets of height $3$, strengthening a result of Bukh in these cases. We also obtain the exact value of $La_{rp}(n,{Y_{h,s},Y_{h,s}})$ and $La(n,{Y_{h,s},Y_{h,s}})$, where $Y_{h,s}$ denotes the poset on $h+s$ elements $x_1,dots,x_h,y_1,dots,y_s$ with $x_1<dots<x_h<y_1,dots,y_s$ and $Y_{h,s}$ denotes the dual poset of $Y_{h,s}$.
Let $B_n$ be the poset generated by the subsets of $[n]$ with the inclusion as relation and let $P$ be a finite poset. We want to embed $P$ into $B_n$ as many times as possible such that the subsets in different copies are incomparable. The maximum n
Let $mathrm{G}$ be a subgroup of the symmetric group $mathfrak S(U)$ of all permutations of a countable set $U$. Let $overline{mathrm{G}}$ be the topological closure of $mathrm{G}$ in the function topology on $U^U$. We initiate the study of the poset
The abstract induced subgraph poset of a graph is the isomorphism class of the induced subgraph poset of the graph, suitably weighted by subgraph counting numbers. The abstract bond lattice and the abstract edge-subgraph poset are defined similarly b
The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set ${1,2,dots, n}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partiti
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform