ﻻ يوجد ملخص باللغة العربية
We study the behavior of neutral meson properties in the presence of a static uniform external magnetic field in the context of nonlocal chiral quark models. The formalism is worked out introducing Ritus transforms of Dirac fields, which allow to obtain closed analytical expressions for $pi^0$ and $sigma$ meson masses and for the $pi^0$ decay constant. Numerical results for these observables are quoted for various parameterizations. In particular, the behavior of the $pi^0$ meson mass with the magnetic field is found to be in good agreement with lattice QCD results. It is also seen that the Goldberger-Treiman and Gell-Mann-Oakes-Renner chiral relations remain valid within these models in the presence of the external magnetic field.
We study the behavior of strongly interacting matter under a uniform intense external magnetic field in the context of nonlocal extensions of the Polyakov-Nambu-Jona-Lasinio model. A detailed description of the formalism is presented, considering the
A detailed study of the analytic structure of 1-loop self energy graphs for neutral and charged $rho$ mesons is presented at finite temperature and arbitrary magnetic field using the real time formalism of thermal field theory. The imaginary part of
We investigate inhomogeneous chiral condensates, such as the so-called dual chiral density wave of dense quark matter, under an external magnetic field at finite real and imaginary chemical potentials. In a model-independent manner, we find that anal
We study the behavior of strongly interacting matter under a strong external magnetic field in the context of chiral quark models that include nonlocal interactions. In particular, we analyze the influence of a constant magnetic field on the chiral q
Using numerical simulations of lattice QCD we calculate the effect of an external magnetic field on the equation of state of the quark-gluon plasma. The results are obtained using a Taylor expansion of the pressure with respect to the magnetic field