To investigate the connection between radio activity and AGN outflows, we present a study of ionized gas kinematics based on [O III] $lambda$5007 emission line along the large-scale radio jet for six radio AGNs. These AGNs are selected based on the radio activity (i.e., $mathrm{L_{1.4GHz}}$ $geqslant$ 10$^{39.8}$ erg s$^{-1}$) as well as optical emission line properties as type 2 AGNs. Using the Red Channel Cross Dispersed Echellette Spectrograph at the Multiple Mirror Telescope, we investigate in detail the [O III] and stellar kinematics. We spatially resolve and probe the central AGN-photoionization sizes, which is important in understanding the structures and evolutions of galaxies. We find that the typical central AGN-photoionization radius of our targets are in range of 0.9$-$1.6 kpc, consistent with the size-luminosity relation of [O III] in the previous studies. We investigate the [O III] kinematics along the large-scale radio jets to test whether there is a link between gas outflows in the narrow-line region and extended radio jet emissions. Contrary to our expectation, we find no evidence that the gas outflows are directly connected to the large scale radio jets.