ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduction of the ordered-magnetic moment and its relationship to Kondo coherence in Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$

170   0   0.0 ( 0 )
 نشر من قبل Benjamin Ueland
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The microscopic details of the suppression of antiferromagnetic order in the Kondo-lattice series Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ due to nonmagnetic dilution by La are revealed through neutron diffraction results for $x=0.20$, $0.40$, $0.75$, and $0.85$. Magnetic Bragg peaks are found for $0.20le xle0.75$, and both the N{e}el temperature, $T_{textrm{N}}$, and the ordered magnetic moment per Ce, $mu$, linearly decrease with increasing $x$. The reduction in $mu$ points to strong hybridization of the increasingly diluted Ce $4f$ electrons, and we find a remarkable quadratic dependence of $mu$ on the Kondo-coherence temperature. We discuss our results in terms of local-moment- versus itinerant-type magnetism and mean-field theory, and show that Ce$_{1-x}$La$_{x}$Cu$_{2}$Ge$_{2}$ provides an exceptional opportunity to quantitatively study competing magnetic interactions in a Kondo lattice.



قيم البحث

اقرأ أيضاً

We report specific heat and neutron scattering experiments performed on the system Ce$_{1-x}$La$_{x}$Ru$_{2}$Si$_{2}$ on the magnetic side of its quantum critical phase diagram. The Kondo temperature does not vanish at the quantum phase transition an d elastic scattering indicates a gradual localisation of the magnetism when $x$ increases in the ordered phase.
We present magnetic susceptibility, resistivity, specific heat, and thermoelectric power measurements on (Ce$_{1-x}$La$_x$)Cu$_2$Ge$_2$ single crystals (0 $leq xleq$ 1). With La substitution, the antiferromagnetic temperature $T_N$ is suppressed in a n almost linear fashion and moves below 0.36 K, the base temperature of our measurements for $x>$ 0.8. Surprisingly, in addition to robust antiferromagnetism, the system also shows low temperature coherent scattering below $T_{coh}$ up to $sim$ 0.9 of La, indicating a small percolation limit $sim$ 9$%$ of Ce that separates a coherent regime from a single-ion Kondo impurity regime. $T_{coh}$ as a function of magnetic field was found to have different behavior for $x$< 0.9 and $x$> 0.9. Remarkably, $(T_{coh})^2$ at $H$ = 0 was found to be linearly proportional to $T_N$. The jump in the magnetic specific heat $delta C_{m}$ at $T_N$ as a function of $T_K/T_N$ for (Ce$_{1-x}$La$_x$)Cu$_2$Ge$_2$ follows the theoretical prediction based on the molecular field calculation for the $S$ = 1/2 resonant level model.
130 - Veljko Zlatic 2005
The evolution of the thermopower EuCu{2}(Ge{1-x}Si{x}){2} intermetallics, which is induced by the Si-Ge substitution, is explained by the Kondo scattering of conduction electrons on the Eu ions which fluctuate between the magnetic 2+ and non-magnetic 3+ Hunds rule configurations. The Si-Ge substitution is equivalent to chemical pressure which modifies the coupling and the relative occupation of the {it f} and conduction states.
105 - L Peyker , C Gold , E-W Scheidt 2009
Starting with the heavy fermion compound CeNi$_9$Ge$_4$, the substitution of nickel by copper leads to a dominance of the RKKY interaction in competition with the Kondo and crystal field interaction. Consequently, this results in an antiferromagnetic phase transition in CeNi$_{9-x}$Cu$_x$Ge$_4$ for $x>0.4$, which is, however, not fully completed up to a Cu-concentration of $x=1$. To study the influence of single-ion effects on the AFM ordering by shielding the $4f$-moments, we analyzed the spin diluted substitution series La$_{0.5}$Ce$_{0.5}$Ni$_{9-x}$Cu$_x$Ge$_4$ by magnetic susceptibility $chi$ and specific heat $C$ measurements. For small Cu-amounts $xleq 0.4$ the data reveal single-ion scaling with regard to the Ce-concentration, while for larger Cu-concentrations the AFM transition (encountered in the CeNi$_{9-x}$Cu$_x$Ge$_4$ series) is found to be completely depressed. Calculation of the entropy reveal that the Kondo-effect still shields the 4$f$-moments of the Ce$^{3+}$-ions in CeNi$_8$CuGe$_4$.
In mixed-valence or heavy-fermion systems, the hybridization between local $f$ orbitals and conduction band states can cause the suppression of long-range magnetic order, which competes with strong spin fluctuations. Ce- and Yb-based systems have bee n found to exhibit fascinating physical properties (heavy-fermion superconductivity, non-Fermi-liquid states, etc.) when tuned to the vicinity of magnetic quantum critical points by use of various external control parameters (temperature, magnetic field, chemical composition). Recently, similar effects (mixed-valence, Kondo fluctuations, heavy Fermi liquid) have been reported to exist in some Eu-based compounds. Unlike Ce (Yb), Eu has a multiple electron (hole) occupancy of its $4f$ shell, and the magnetic Eu$^{2+}$ state ($4f^7$) has no orbital component in the usual $LS$ coupling scheme, which can lead to a quite different and interesting physics. In the EuCu$_{2}$(Si$_{x}$Ge$_{1-x}$)$_{2}$ series, where the valence can be tuned by varying the Si/Ge ratio, it has been reported that a significant valence fluctuation can exist even in the magnetic order regime. This paper presents a detailed study of the latter material using different microscopic probes (XANES, Mossbauer spectroscopy, elastic and inelastic neutron scattering), in which the composition dependence of the magnetic order and dynamics across the series is traced back to the change in the Eu valence state. In particular, the results support the persistence of valence fluctuations into the antiferromagnetic state over a sizable composition range below the critical Si concentration $x_c approx 0.65$. The sequence of magnetic ground states in the series is shown to reflect the evolution of the magnetic spectral response.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا