ترغب بنشر مسار تعليمي؟ اضغط هنا

Large subgroups in finite groups

169   0   0.0 ( 0 )
 نشر من قبل Stefanos Aivazidis
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following Isaacs (see [Isa08, p. 94]), we call a normal subgroup N of a finite group G large, if $C_G(N) leq N$, so that N has bounded index in G. Our principal aim here is to establish some general results for systematically producing large subgroups in finite groups (see Theorems A and C). We also consider the more specialised problems of finding large (non-abelian) nilpotent as well as abelian subgroups in soluble groups.



قيم البحث

اقرأ أيضاً

191 - Wenbin Guo , Evgeny Vdovin 2017
Denote by $ u_p(G)$ the number of Sylow $p$-subgroups of $G$. It is not difficult to see that $ u_p(H)leq u_p(G)$ for $Hleq G$, however $ u_p(H)$ does not divide $ u_p(G)$ in general. In this paper we reduce the question whether $ u_p(H)$ divides $ u _p(G)$ for every $Hleq G$ to almost simple groups. This result substantially generalizes the previous result by G. Navarro and also provides an alternative proof for the Navarro theorem.
Let $w$ be a multilinear commutator word. In the present paper we describe recent results that show that if $G$ is a profinite group in which all $w$-values are contained in a union of finitely (or in some cases countably) many subgroups with a presc ribed property, then the verbal subgroup $w(G)$ has the same property as well. In particular, we show this in the case where the subgroups are periodic or of finite rank.
Let $G$ be a finite group and $sigma ={sigma_{i} | iin I}$ some partition of the set of all primes $Bbb{P}$, that is, $sigma ={sigma_{i} | iin I }$, where $Bbb{P}=bigcup_{iin I} sigma_{i}$ and $sigma_{i}cap sigma_{j}= emptyset $ for all $i e j$. We s ay that $G$ is $sigma$-primary if $G$ is a $sigma _{i}$-group for some $i$. A subgroup $A$ of $G$ is said to be: ${sigma}$-subnormal in $G$ if there is a subgroup chain $A=A_{0} leq A_{1} leq cdots leq A_{n}=G$ such that either $A_{i-1}trianglelefteq A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $sigma$-primary for all $i=1, ldots, n$, modular in $G$ if the following conditions hold: (i) $langle X, A cap Z rangle=langle X, A rangle cap Z$ for all $X leq G, Z leq G$ such that $X leq Z$, and (ii) $langle A, Y cap Z rangle=langle A, Y rangle cap Z$ for all $Y leq G, Z leq G$ such that $A leq Z$. In this paper, a subgroup $A$ of $G$ is called $sigma$-quasinormal in $G$ if $L$ is modular and ${sigma}$-subnormal in $G$. We study $sigma$-quasinormal subgroups of $G$. In particular, we prove that if a subgroup $H$ of $G$ is $sigma$-quasinormal in $G$, then for every chief factor $H/K$ of $G$ between $H^{G}$ and $H_{G}$ the semidirect product $(H/K)rtimes (G/C_{G}(H/K))$ is $sigma$-primary.
216 - Yangming Li 2020
Suppose that $G$ is a finite group and $H$ is a subgroup of $G$. We say that $H$ is s-semipermutable in $G$ if $HG_p = G_pH$ for any Sylow $p$-subgroup $G_p$ of $G$ with $(p, |H|) = 1$. We investigate the influence of s-semipermutable subgroups on th e structure of finite groups. Some recent results are generalized.
In this paper, we study a group in which every 2-maximal subgroup is a Hall subgroup.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا