ﻻ يوجد ملخص باللغة العربية
We study the stabilization of an isolated magnetic skyrmion in a magnetic monolayer on a nonmagnetic conducting substrate via the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. Two different types of the substrate are considered, usual normal metal and single-layer graphene. While the full stability analysis for skyrmions in the presence of the RKKY coupling requires a separate effort that is outside the scope of this work, we are able to study the radial stability (stability of a skyrmion against collapse) using variational energy estimates obtained within first-order perturbation theory, with the unperturbed Hamiltonian describing the isotropic Heisenberg magnet, and the two perturbations being the RKKY exchange and the easy-axis anisotropy. We show that a proper treatment of the long-range nature of the RKKY interaction leads to a qualitatively different stabilization scenario compared to previous studies, where solitons were stabilized by the frustrated exchange coupling (leading to terms with the fourth power of the magnetization gradients) or by the Dzyaloshinskii-Moriya interaction (described by terms linear in the magnetization gradients). In the case of a metallic substrate, the skyrmion stabilization is possible under restrictive conditions on the Fermi surface parameters, while in the case of a graphene substrate the stabilization is naturally achieved in several geometries with a lattice-matching of graphene and magnetic layer.
Magnetic skyrmions in chiral-lattice ferromagnets are currently attracting enormous research interest because of their potential applications in spintronic devices. However, they emerge in bulk specimens only in a narrow window of temperature and mag
Quantized transports of fermions are topological phenomena determined by the sum of the Chern numbers of all the energy bands below the Fermi energy. For bosonic excitations, e.g. phonons and magnons in a crystal, topological transport is dominated b
We examine the RKKY interactions of CeB$_6$ between multipole moments based on the effective Wannier model obtained from the bandstructure calculation including 14 Ce-$f$ orbitals and 60 conduction orbitals of Ce-$d,s$ and B-$p,s$. By using the $f$-$
Recent experiments have reported on controlled nucleation of individual skyrmions in chiral magnets. Here we show that in magnetic ultra-thin films with interfacial Dzyaloshinskii-Moriya interaction, single skyrmions of different radii can be nucleat
The competition between the indirect exchange interaction (IEC) of magnetic impurities in metals and the Kondo effect gives rise to a rich quantum phase diagram, the Doniach Diagram. In disordered metals, both the Kondo temperature and the IEC are wi