ترغب بنشر مسار تعليمي؟ اضغط هنا

Boron films produced by high energy Pulsed Laser Deposition

82   0   0.0 ( 0 )
 نشر من قبل David Dellasega PhD
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Micron-thick boron films have been deposited by Pulsed Laser Deposition in vacuum on several substrates at room temperature. The use of high energy pulses (>700 mJ) results in the deposition of smooth coatings with low oxygen uptake even at base pressures of 10$^{-4}$ - 10$^{-3}$ Pa. A detailed structural analysis, by X-Ray Diffraction and Raman, allowed to assess the amorphous nature of the deposited films as well as to determine the base pressure that prevents boron oxide formation. In addition the crystallization dynamics has been characterized showing that film crystallinity already improves at relatively low temperatures (800 {deg}C). Elastic properties of the boron films have been determined by Brillouin spectroscopy. Finally, micro-hardness tests have been used to explore cohesion and hardness of B films deposited on aluminum, silicon and alumina. The reported deposition strategy allows the growth of reliable boron coatings paving the way for their use in many technology fields.



قيم البحث

اقرأ أيضاً

84 - A. Heinrich , B. Renner , R. Lux 2003
Cu2Ta4O12 (CTaO) thin films were successfully deposited on Si(100) substrates by pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CTaO thin films were strongly affected by substrate temperature, oxygen pr essure and target - substrate distance. In general during deposition of CTaO the formation of a Ta2O5 phase appeared, on which CTaO grew with different orientations. We report on the experimental set-up, details for film deposition and the film properties determined by SEM, EDX and XRD.
Wires of sp-hybridized carbon atoms are attracting interest for both fundamental aspects of carbon science and for their appealing functional properties. The synthesis by physical vapor deposition has been reported to provide sp-rich carbon films but still needs to be further developed and understood in detail. Here the synthesis of carbon-atom wires (CAWs) has been achieved by nanosecond pulsed laser deposition (PLD) expoliting the strong out-of-equilibrium conditions occurring when the ablation plasma is confined in a background gas. Surface Enhnaced Raman scattering (SERS) spectra of deposited films indicates that CAWs are mixed with a mainly $sp^2$ amorphous carbon in a $sp-sp^2$ hybrid material. Optimal conditions for the deposition of sp-carbon phase have been investigated by changing deposition parameters thus suggesting basic mechanisms of carbon wires formation. Our proof-of-concept may open new perspectives for the targeted fabrication of CAWs and $sp-sp^2$ structures.
Epitaxial titanium diboride thin films have been deposited on sapphire substrates by Pulsed Laser Ablation technique. Structural properties of the films have been studied during the growth by Reflection High Energy Electron Diffraction (RHEED) and ex -situ by means of X-ray diffraction techniques; both kinds of measurements indicate a good crystallographic orientation of the TiB2 film both in plane and along the c axis. A flat surface has been observed by Atomic Force Microscopy imaging. Electrical resistivity at room temperature resulted to be five times higher than the value reported for single crystals. The films resulted to be also very stable at high temperature, which is very promising for using this material as a buffer layer in the growth of magnesium diboride thin films.
Control of thin film stoichiometry is of primary relevance to achieve desired functionality. Pulsed laser deposition ablating from binary-oxide targets (sequential deposition) can be applied to precisely control the film composition, offsetting the i mportance of growth conditions on the film stoichiometry. In this work, we demonstrate that the cation stoichiometry of SrTiO$_3$ thin films can be finely tuned by sequential deposition from SrO and TiO$_2$ targets. Homoepitaxial SrTiO$_3$ films were deposited at different substrate temperatures and Ti/Sr pulse ratios, allowing the establishment of a growth window for stoichiometric SrTiO$_3$. The growth kinetics and nucleation processes were studied by reflection high-energy electron diffraction and atomic force microscopy, providing information about the growth mode and the degree of off-stoichiometry. At the optimal (stoichiometric) growth conditions, films exhibit atomically flat surfaces, whereas off-stoichiometry is accommodated by crystal defects, 3D islands and/or surface precipitates depending on the substrate temperature and the excess cation. This technique opens the way to precisely control stoichiometry and doping of oxide thin films.
Pulsed laser deposition, a non-equilibrium thin-film growth technique, was used to stabilize metastable tetragonal iron sulfide (FeS), the bulk state of which is known as a superconductor with a critical temperature of 4 K. Comprehensive experiments revealed four important factors to stabilize tetragonal FeS epitaxial thin films: (i) an optimum growth temperature of 300 {deg}C followed by thermal quenching, (ii) an optimum growth rate of ~7 nm/min, (iii) use of a high-purity bulk target, and (iv) use of a single-crystal substrate with small in-plane lattice mismatch (CaF2). Electrical resistivity measurements indicated that none of all the films exhibited superconductivity. Although an electric double-layer transistor structure was fabricated using the tetragonal FeS epitaxial film as a channel layer to achieve high-density carrier doping, no phase transition was observed. Possible reasons for the lack of superconductivity include lattice strain, off-stoichiometry of the film, electrochemical etching by the ionic liquid under gate bias, and surface degradation during device fabrication.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا