ﻻ يوجد ملخص باللغة العربية
Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster. A rapid decline in the halo profile is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around redMaPPer galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean M_200m mass ~2.5 x 10^14 M_sun, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.13 +/- 0.07 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.34 +/- 0.21 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. For different cluster and galaxy samples, we find that consistent with LCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the redMaPPer algorithm may impact the location of r_sp. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius,
Weak gravitational lensing studies of galaxy clusters often assume a spherical cluster model to simplify the analysis, but some recent studies have suggested this simplifying assumption may result in large biases in estimated cluster masses and conce
The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wi
We present galaxy-galaxy lensing results from 139 square degrees of Dark Energy Survey (DES) Science Verification (SV) data. Our lens sample consists of red galaxies, known as redMaGiC, which are specifically selected to have a low photometric redshi