ﻻ يوجد ملخص باللغة العربية
Conventional nano-photonic schemes minimise multiple scattering to realise a miniaturised version of beam-splitters, interferometers and optical cavities for light propagation and lasing. Here instead, we introduce a nanophotonic network built from multiple paths and interference, to control and enhance light-matter interaction via light localisation. The network is built from a mesh of subwavelength waveguides, and can sustain localised modes and mirror-less light trapping stemming from interference over hundreds of nodes. With optical gain, these modes can easily lase, reaching $sim$100 pm linewidths. We introduce a graph solution to the Maxwells equation which describes light on the network, and predicts lasing action. In this framework, the network optical modes can be designed via the network connectivity and topology, and lasing can be tailored and enhanced by the network shape. Nanophotonic networks pave the way for new laser device architectures, which can be used for sensitive biosensing and on-chip optical information processing.
Nanophotonic entangled-photon sources are a critical building block of chip-scale quantum photonic architecture and have seen significant development over the past two decades. These sources generate photon pairs that typically span over a narrow fre
Photonic molecules are composed of two or more optical resonators, arranged such that some of the modes of each resonator are coupled to those of the other. Such structures have been used for emulating the behaviour of two-level systems, lasing, and
Atmospheric turbulence causes fluctuations in the local refractive index of air that accumulatively disturb a waves phase and amplitude distribution as it propagates. This impairs the effective range of laser weapons as well as the performance of fre
Random lasers use radiative gain and multiple scatterers in disordered media to generate light amplification. In this study, we demonstrate a random laser based on diamond nanoneedles that act as scatterers in combination with fluorescent dye molecul
The need for solving optimization problems is prevalent in a wide range of physical applications, including neuroscience, network design, biological systems, socio-economics, and chemical reactions. Many of these are classified as non-deterministic p