ﻻ يوجد ملخص باللغة العربية
We present the Fermi Large Area Telescope (LAT) observations of the binary neutron star merger event GW170817 and the associated short gamma-ray burst (SGRB) GRB,170817A detected by the Fermi Gamma-ray Burst Monitor. The LAT was entering the South Atlantic Anomaly at the time of the LIGO/Virgo trigger ($t_{rm GW}$) and therefore cannot place constraints on the existence of high-energy (E $>$ 100 MeV) emission associated with the moment of binary coalescence. We focus instead on constraining high-energy emission on longer timescales. No candidate electromagnetic counterpart was detected by the LAT on timescales of minutes, hours, or days after the LIGO/Virgo detection. The resulting flux upper bound (at 95% C.L./) from the LAT is $4.5times$10$^{-10}$ erg cm$^{-2}$ s$^{-1}$ in the 0.1--1 GeV range covering a period from T0 + 1153 s to T0 + 2027 s. At the distance of GRB,170817A, this flux upper bound corresponds to a luminosity upper bound of 9.7$times10^{43}$ erg s$^{-1}$, which is 5 orders of magnitude less luminous than the only other LAT SGRB with known redshift, GRB,090510. We also discuss the prospects for LAT detection of electromagnetic counterparts to future gravitational wave events from Advanced LIGO/Virgo in the context of GW170817/GRB,170817A.
The Fermi Large Area Telescope (LAT) has an instantaneous field of view covering $sim 1/5$ of the sky and completes a survey of the full sky every ~3 hours. It provides a continuous, all-sky survey of high-energy gamma-rays, enabling searches for tra
We present the emph{Fermi} Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterparts was detected by either GBM or LAT. A detailed an
With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational wave (GW) events. GBM observations at the time of the Laser Interferometer G
Following the reported discovery of the gravitational-wave pulse GW170817/ G298048 by three LIGO/Virgo antennae (Abbott et al., 2017a), the MASTER Global Robotic Net telescopes obtained the first image of the NGC 4993 galaxy after the NS+NS merging.
We report deep Chandra, HST and VLA observations of the binary neutron star event GW170817 at $t<160$ d after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the