ﻻ يوجد ملخص باللغة العربية
The dynamic activity in massive star forming regions prior to the formation of bright protostars is still not fully investigated. In this work we present observations of HCO+ J=1-0 and N2H+ J=1-0 made with the IRAM 30m telescope towards a sample of 16 Herschel-identified massive 70 micron quiet clumps associated with infrared dark clouds. The clumps span a mass range from 300 M_sun to 2000 M_sun. The N2H+ data show that the regions have significant non-thermal motions with velocity dispersion between 0.28 km s^-1 and 1.5 km s^-1, corresponding to Mach numbers between 2.6 and 11.5. The majority of the 70 micron quiet clumps have asymmetric HCO+ line profiles, indicative of significant dynamical activity. We show that there is a correlation between the degree of line asymmetry and the surface density Sigma of the clumps, with clumps of Sigma>=0.1 g cm^-2 having more asymmetric line profiles, and so are more dynamically active, than clumps with lower Sigma. We explore the relationship between velocity dispersion, radius and Sigma and show how it can be interpreted as a relationship between an acceleration generated by the gravitational field a_G, and the measured kinetic acceleration, a_k, consistent with the majority of the non-thermal motions originating from self-gravity. Finally, we consider the role of external pressure and magnetic fields in the interplay of forces.
Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, ther
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), w
Because the 157.74 micron [C II] line is the dominant coolant of star-forming regions, it is often used to infer the global star-formation rates of galaxies. By characterizing the [C II] and far-infrared emission from nearby Galactic star-forming mol
The enormous radiative and mechanical luminosities of massive stars impact a vast range of scales and processes, from the reionization of the universe, to the evolution of galaxies, to the regulation of the interstellar medium, to the formation of st
Newborn stars form within the localized, high density regions of molecular clouds. The sequence and rate at which stars form in dense clumps and the dependence on local and global environments are key factors in developing descriptions of stellar pro