ﻻ يوجد ملخص باللغة العربية
We investigate the relationship between the black hole accretion rate (BHAR) and star-formation rate (SFR) for Milky Way (MW) and Andromeda (M31)-mass progenitors from z = 0.2 - 2.5. We source galaxies from the Ks-band selected ZFOURGE survey, which includes multi-wavelenth data spanning 0.3 - 160um. We use decomposition software to split the observed SEDs of our galaxies into their active galactic nuclei (AGN) and star-forming components, which allows us to estimate BHARs and SFRs from the infrared (IR). We perform tests to check the robustness of these estimates, including a comparison to BHARs and SFRs derived from X-ray stacking and far-IR analysis, respectively. We find as the progenit- ors evolve, their relative black hole-galaxy growth (i.e. their BHAR/SFR ratio) increases from low to high redshift. The MW-mass progenitors exhibit a log-log slope of 0.64 +/- 0.11, while the M31-mass progenitors are 0.39 +/- 0.08. This result contrasts with previous studies that find an almost flat slope when adopting X-ray/AGN-selected or mass-limited samples and is likely due to their use of a broad mixture of galaxies with different evolutionary histories. Our use of progenitor-matched samples highlights the potential importance of carefully selecting progenitors when searching for evolutionary relationships between BHAR/SFRs. Additionally, our finding that BHAR/SFR ratios do not track the rate at which progenitors quench casts doubts over the idea that the suppression of star-formation is predominantly driven by luminous AGN feedback (i.e. high BHARs).
We study the history from $zsim2$ to $zsim0$ of the stellar mass assembly of quiescent and star-forming galaxies in a spatially resolved fashion. For this purpose we use multi-wavelength imaging data from the Hubble Space Telescope (HST) over the GOO
Using the HST/WFC3 and ACS multi-band imaging data taken in CANDELS and 3D-HST, we study the general properties and the diversity of the progenitors of the Milky Way (MWs) and local massive galaxy (MGs) at 0.5 < z < 3.0, based on a constant cumulativ
We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0<z<2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to fol
We measure the evolution of the quiescent fraction and quenching efficiency of satellites around star-forming and quiescent central galaxies with stellar mass $log(M_{mathrm{cen}}/M_{odot})>10.5$ at $0.3<z<2.5$. We combine imaging from three deep nea
Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant ove