ﻻ يوجد ملخص باللغة العربية
In this paper we consider a statistical estimation problem known as atomic deconvolution. Introduced in reliability, this model has a direct application when considering biological data produced by flow cytometers. In these experiments, biologists measure the fluorescence emission of treated cells and compare them with their natural emission to study the presence of specific molecules on the cells surface. They observe a signal which is composed of a noise (the natural fluorescence) plus some additional signal related to the quantity of molecule present on the surface if any. From a statistical point of view, we aim at inferring the percentage of cells expressing the selected molecule and the probability distribution function associated with its fluorescence emission. We propose here an adap-tive estimation procedure based on a previous deconvolution procedure introduced by [vEGS08, GvES11]. For both estimating the mixing parameter and the mixing density automatically, we use the Lepskii method based on the optimal choice of a bandwidth using a bias-variance decomposition. We then derive some concentration inequalities for our estimators and obtain the convergence rates, that are shown to be minimax optimal (up to some log terms) in Sobolev classes. Finally, we apply our algorithm on simulated and real biological data.
In this work, we focus on variational Bayesian inference on the sparse Deep Neural Network (DNN) modeled under a class of spike-and-slab priors. Given a pre-specified sparse DNN structure, the corresponding variational posterior contraction rate is c
We consider the nonparametric estimation of the density function of weakly and strongly dependent processes with noisy observations. We show that in the ordinary smooth case the optimal bandwidth choice can be influenced by long range dependence, as
We derive asymptotic normality of kernel type deconvolution estimators of the density, the distribution function at a fixed point, and of the probability of an interval. We consider the so called super smooth case where the characteristic function of
The paper discusses the estimation of a continuous density function of the target random field $X_{bf{i}}$, $bf{i}in mathbb {Z}^N$ which is contaminated by measurement errors. In particular, the observed random field $Y_{bf{i}}$, $bf{i}in mathbb {Z}^
This paper deals with the estimation of a probability measure on the real line from data observed with an additive noise. We are interested in rates of convergence for the Wasserstein metric of order $pgeq 1$. The distribution of the errors is assume