ﻻ يوجد ملخص باللغة العربية
We present first strong observational evidence that the X-ray cool-core bias or the apparent bias in the abundance of relaxed clusters is absent in our REFLEX volume-limited sample (ReVols). We show that these previously observed biases are due to the survey selection method such as for an flux-limited survey, and are not due to the inherent nature of X-ray selection. We also find that the X-ray luminosity distributions of clusters for the relaxed and for the disturbed clusters are distinct and a displacement of approximately 60 per cent is required to match two distributions. Our results suggest that to achieve more precise scaling relation one may need to take the morphology of clusters and their fractional abundance into account.
The original abstract significantly exceeds the space available here, so heres a brief summary. The abstract is similar to the abstract of astro-ph/0111285 (ApJ, 567, 716) which describes the X-ray galaxy cluster sample HIFLUGCS, the X-ray luminosi
We aim to determine the intrinsic variety, at a given mass, of the properties of the intracluster medium in clusters of galaxies. This requires a cluster sample selected independently of the intracluster medium content for which reliable masses and s
We present the study of nineteen low X-ray luminosity galaxy clusters (L$_X sim$ 0.5--45 $times$ $10^{43}$ erg s$^{-1}$), selected from the ROSAT Position Sensitive Proportional Counters (PSPC) Pointed Observations (Vikhlinin et al. 1998) and the rev
Galaxy clusters structure, dominated by dark matter, is traced by member galaxies in the optical and hot intra-cluster medium (ICM) in X-rays. We compare the radial distribution of these components and determine the mass-to-light ratio vs. system mas
The mass function of galaxy clusters is a sensitive tracer of the gravitational evolution of the cosmic large-scale structure and serves as an important census of the fraction of matter bound in large structures. We obtain the mass function by fittin