ترغب بنشر مسار تعليمي؟ اضغط هنا

Cuprate diamagnetism in the presence of a pseudogap: Beyond the standard fluctuation formalism

131   0   0.0 ( 0 )
 نشر من قبل Rufus Boyack
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is often claimed that among the strongest evidence for preformed-pair physics in the cuprates are the experimentally observed large values for the diamagnetic susceptibility and Nernst coefficient. These findings are most apparent in the underdoped regime, where a pseudogap is also evident. While the conventional (Gaussian) fluctuation picture has been applied to address these results, this preformed-pair approach omits the crucial effects of a pseudogap. In this paper we remedy this omission by computing the diamagnetic susceptibility and Nernst coefficient in the presence of a normal state gap. We find a large diamagnetic response for a range of temperatures much higher than the transition temperature. In particular, we report semi-quantitative agreement with the measured diamagnetic susceptibility onset temperatures, over the entire range of hole dopings. Notable is the fact that at the lower critical doping of the superconducting dome, where the transition temperature vanishes and the pseudogap onset temperature remains large, the onset temperature for both diamagnetic and transverse thermoelectric transport coefficients tends to zero. Due to the importance attributed to the cuprate diamagnetic susceptibility and Nernst coefficient, this work helps to clarify the extent to which pairing fluctuations are a component of the cuprate pseudogap.



قيم البحث

اقرأ أيضاً

During the last decade, translational and rotational symmetry-breaking phases -- density wave order and electronic nematicity -- have been established as generic and distinct features of many correlated electron systems, including pnictide and cuprat e superconductors. However, in cuprates, the relationship between these electronic symmetry-breaking phases and the enigmatic pseudogap phase remains unclear. Here, we employ resonant x-ray scattering in a cuprate high-temperature superconductor La$_{1.6-x}$Nd$_{0.4}$Sr$_{x}$CuO$_{4}$ (Nd-LSCO) to navigate the cuprate phase diagram, probing the relationship between electronic nematicity of the Cu 3$d$ orbitals, charge order, and the pseudogap phase as a function of doping. We find evidence for a considerable decrease in electronic nematicity beyond the pseudogap phase, either by raising the temperature through the pseudogap onset temperature $T^{*}$ or increasing doping through the pseudogap critical point, $p^{*}$. These results establish a clear link between electronic nematicity, the pseudogap, and its associated quantum criticality in overdoped cuprates. Our findings anticipate that electronic nematicity may play a larger role in understanding the cuprate phase diagram than previously recognized, possibly having a crucial role in the phenomenology of the pseudogap phase.
The nature of the pseudogap phase remains a major barrier to our understanding of cuprate high-temperature superconductivity. Whether or not this metallic phase is defined by any of the reported broken symmetries, the topology of its Fermi surface re mains a fundamental open question. Here we use angle-dependent magnetoresistance (ADMR) to measure the Fermi surface of the cuprate Nd-LSCO. Above the critical doping $p^*$---outside of the pseudogap phase---we fit the ADMR data and extract a Fermi surface geometry that is in quantitative agreement with angle-resolved photoemission. Below $p^*$---within the pseudogap phase---the ADMR is qualitatively different, revealing a clear transformation of the Fermi surface. Changes in the quasiparticle lifetime across $p^*$ are ruled out as the cause of this transformation. Instead we find that our data are most consistent with a reconstruction of the Fermi surface by a $Q=(pi, pi)$ wavevector.
344 - S. Sakai , S. Blanc , M. Civelli 2012
We reveal the full energy-momentum structure of the pseudogap of underdoped high-Tc cuprate superconductors. Our combined theoretical and experimental analysis explains the spectral-weight suppression observed in the B2g Raman response at finite ener gies in terms of a pseudogap appearing in the single-electron excitation spectra above the Fermi level in the nodal direction of momentum space. This result suggests an s-wave pseudogap (which never closes in the energy-momentum space), distinct from the d-wave superconducting gap. Recent tunneling and photoemission experiments on underdoped cuprates also find a natural explanation within the s-wave-pseudogap scenario.
211 - N. M. Plakida 2004
A microscopic theory of superconductivity is formulated within an effective $p$-$d$ Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. T he antiferromagnetic exchange caused by interband hopping results in pairing of all carries in the conduction subband and high Tc proportional to the Fermi energy. Kinematic interaction in intraband hopping is responsible for the conventional spin-fluctuation pairing. Numerical solution of the gap equation proves the d-wave gap symmetry and defines Tc doping dependence. Oxygen isotope shift and pressure dependence of Tc are also discussed.
We study the doping evolution of the electronic structure in the pseudogap state of high-Tc cuprate superconductors, by means of a cluster extension of the dynamical mean-field theory applied to the two-dimensional Hubbard model. The calculated singl e-particle excitation spectra in the strongly underdoped regime show a marked electron-hole asymmetry and reveal a s-wave pseudogap, which display a finite amplitude in all the directions in the momentum space but not always at the Fermi level: The energy location of the gap strongly depends on momentum, and in particular in the nodal region, it is above the Fermi level. With increasing hole doping, the pseudogap disappears everywhere in the momentum space. We show that the origin and the s-wave structure of the pseudogap can be ascribed to the emergence of a strong-scattering surface, which appears in the energy-momentum space close to the Mott insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا