ترغب بنشر مسار تعليمي؟ اضغط هنا

All-sky Search for High-Energy Neutrinos from Gravitational Wave Event GW170104 with the ANTARES Neutrino Telescope

245   0   0.0 ( 0 )
 نشر من قبل Alexis Coleiro
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4$^{textrm{th}}$, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the ANTARES neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within $pm500$ s around the GW event time nor any time clustering of events over an extended time window of $pm3$ months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than $sim4times 10^{54}$ erg for a $E^{-2}$ spectrum.



قيم البحث

اقرأ أيضاً

The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find 2 and 4 neutrino candidates detected by IceCube, and 1 and 0 detected by ANTARES, within $pm500$ s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use non-detection to constrain isotropic-equivalent high-energy neutrino emission from GW151226 adopting the GW events 3D localization, to less than $2times 10^{51}-2times10^{54}$ erg.
We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search for coincident neutrino candidates within the data recorded by the Ic eCube and ANTARES neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within 500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and ANTARES were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this non-detection to constrain neutrino emission from the gravitational-wave event.
A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coinc ident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.
Results are presented of a search for cosmic sources of high energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 degrees. The neutrino flux sensitivity is 7.5 x 10-8 ~ (E/GeV)^-2 GeV^-1 s^-1 cm^-2 for the part of the sky that is always visible (declination < -48 degrees), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
In the past decade, a new class of bright transient radio sources with millisecond duration has been discovered. The origin of these so-called Fast Radio Bursts (FRBs) is still a great mystery despite the growing observational efforts made by various multi-wavelength and multi-messenger facilities. So far, many models have been proposed to explain FRBs but neither the progenitors nor the radiative and the particle acceleration processes at work have been clearly identified. In this paper, the question whether some hadronic processes may occur in the vicinity of the FRB source is assessed. If so, FRBs may contribute to the high energy cosmic-ray and neutrino fluxes. A search for these hadronic signatures has been done using the ANTARES neutrino telescope. The analysis consists in looking for high-energy neutrinos, in the TeV-PeV regime, spatially and temporally coincident with the detected FRBs. Most of the FRBs discovered in the period 2013-2017 were in the field of view of the ANTARES detector, which is sensitive mostly to events originating from the Southern hemisphere. From this period, 12 FRBs have been selected and no coincident neutrino candidate was observed. Upper limits on the per burst neutrino fluence have been derived using a power law spectrum, $rm{frac{dN}{dE_ u}propto E_ u^{-gamma}}$, for the incoming neutrino flux, assuming spectral indexes $gamma$ = 1.0, 2.0, 2.5. Finally, the neutrino energy has been constrained by computing the total energy radiated in neutrinos assuming different distances for the FRBs. Constraints on the neutrino fluence and on the energy released are derived from the associated null results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا