ﻻ يوجد ملخص باللغة العربية
Automatically predicting age group and gender from face images acquired in unconstrained conditions is an important and challenging task in many real-world applications. Nevertheless, the conventional methods with manually-designed features on in-the-wild benchmarks are unsatisfactory because of incompetency to tackle large variations in unconstrained images. This difficulty is alleviated to some degree through Convolutional Neural Networks (CNN) for its powerful feature representation. In this paper, we propose a new CNN based method for age group and gender estimation leveraging Residual Networks of Residual Networks (RoR), which exhibits better optimization ability for age group and gender classification than other CNN architectures.Moreover, two modest mechanisms based on observation of the characteristics of age group are presented to further improve the performance of age estimation.In order to further improve the performance and alleviate over-fitting problem, RoR model is pre-trained on ImageNet firstly, and then it is fune-tuned on the IMDB-WIKI-101 data set for further learning the features of face images, finally, it is used to fine-tune on Adience data set. Our experiments illustrate the effectiveness of RoR method for age and gender estimation in the wild, where it achieves better performance than other CNN methods. Finally, the RoR-152+IMDB-WIKI-101 with two mechanisms achieves new state-of-the-art results on Adience benchmark.
Age estimation from a single face image has been an essential task in the field of human-computer interaction and computer vision, which has a wide range of practical application values. Accuracy of age estimation of face images in the wild is relati
Image-based age estimation aims to predict a persons age from facial images. It is used in a variety of real-world applications. Although end-to-end deep models have achieved impressive results for age estimation on benchmark datasets, their performa
This paper describes the details of Sighthounds fully automated age, gender and emotion recognition system. The backbone of our system consists of several deep convolutional neural networks that are not only computationally inexpensive, but also prov
Facial attribute analysis in the real world scenario is very challenging mainly because of complex face variations. Existing works of analyzing face attributes are mostly based on the cropped and aligned face images. However, this result in the capab
Automatic understanding of human affect using visual signals is of great importance in everyday human-machine interactions. Appraising human emotional states, behaviors and reactions displayed in real-world settings, can be accomplished using latent