ﻻ يوجد ملخص باللغة العربية
The cosmic expansion history, mapped by the Hubble parameter as a function of redshift, offers the most direct probe of the dark energy equation of state. One way to determine the Hubble parameter at different redshifts is essentially differentiating the cosmic age or distance with respect to redshift, which may incur large numerical errors with observational data. Taking the scenario that the Hubble parameter increases monotonically with redshift as a reasonable prior, we propose to enforce the monotonicity when reconstructing the Hubble parameter at a series of redshifts. Tests with mock type Ia supernova (SN Ia) data show that the monotonicity prior does not introduce significant biases and that errors on the Hubble parameter are greatly reduced compared to those determined with a flat prior at each redshift. Results from real SN Ia data are in good agreement with those based on ages of passively evolving galaxies. Although the Hubble parameter reconstructed from SN Ia distances does not necessarily provide more information than the distances themselves do, it offers a convenient way to compare with constraints from other methods. Moreover, the monotonicity prior is expected to be helpful to other probes that measure the Hubble parameter at multiple redshifts (e.g., baryon acoustic oscillations), and it may be generalized to other cosmological quantities that are reasonably monotonic with redshift.
Line-intensity mapping (LIM) of emission form star-forming galaxies can be used to measure the baryon acoustic oscillation (BAO) scale as far back as the epoch of reionization. This provides a standard cosmic ruler to constrain the expansion rate of
The measurement of the expansion history of the Universe from the redshift unknown gravitational wave (GW) sources (dark GW sources) detectable from the network of LIGO-Virgo-KAGRA (LVK) detectors depends on the synergy with the galaxy surveys having
The cosmic microwave background (CMB) serves as a backlight to large-scale structure during the epoch of reionization, where Thomson scattering gives rise to temperature anisotropies on small angular scales from the kinetic Sunyaev Zeldovich (kSZ) ef
We test Einstein gravity using cosmological observations of both expansion and structure growth, including the latest data from supernovae (Union2.1), CMB (WMAP7), weak lensing (CFHTLS) and peculiar velocity of galaxies (WiggleZ). We fit modified gra
We investigate the physics driving the cosmic star formation (SF) history using the more than fifty large, cosmological, hydrodynamical simulations that together comprise the OverWhelmingly Large Simulations (OWLS) project. We systematically vary the