ﻻ يوجد ملخص باللغة العربية
Quantum probing consists of suitably exploiting a simple, small, and controllable quantum system to characterize a larger and more complex system. Here, we address the estimation of the cutoff frequency of the Ohmic spectral density of a harmonic reservoir by quantum probes. To this aim, we address the use of single-qubit and two-qubit systems and different kinds of coupling with the bath of oscillators. We assess the estimation precision by the quantum Fisher information of the sole quantum probe as well as the corresponding quantum signal-to-noise ratio. We prove that, for most of the values of the Ohmicity parameter, a simple probe such as a single qubit is already optimal for the precise estimation of the cutoff frequency. Indeed for those values, upon considering a two-qubit probe either in a Bell or in separable state, we do not find improvement to the estimation precision. However, we also showed that there exist few conditions where employing two qubits in a Bell state interacting with a common bath is more suitable for precisely estimating the cutoff frequency.
It is often the case that the environment of a quantum system may be described as a bath of oscillators with Ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or
We address a particular instance where open quantum systems may be used as quantum probes for an emergent property of a complex system, as the temperature of a thermal bath. The inherent fragility of the quantum probes against decoherence is the key
We address the discrimination of structured baths at different temperatures by dephasing quantum probes. We derive the exact reduced dynamics and evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a q
We address parameter estimation for complex/structured systems and suggest an effective estimation scheme based on continuous-variables quantum probes. In particular, we investigate the use of a single bosonic mode as a probe for Ohmic reservoirs, an
We seek for the optimal strategy to infer the width $a$ of an infinite potential wells by performing measurements on the particle(s) contained in the well. In particular, we address quantum estimation theory as the proper framework to formulate the p