We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to a uniform field is dominated by the third-order conductivity tensor $sigma^{(3)}$ whose magnitude and temperature dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain explicit formulas for $sigma^{(3)}$ for Dirac materials such as graphene and Weyl semimetals. We make predictions for the third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic birefringence experiments.