ترغب بنشر مسار تعليمي؟ اضغط هنا

Benchmarking five numerical simulation techniques for computing resonance wavelengths and quality factors in photonic crystal membrane line defect cavities

136   0   0.0 ( 0 )
 نشر من قبل Jakob Rosenkrantz de Lasson Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present numerical studies of two photonic crystal membrane microcavities, a short line-defect cavity with relatively low quality ($Q$) factor and a longer cavity with high $Q$. We use five state-of-the-art numerical simulation techniques to compute the cavity $Q$ factor and the resonance wavelength $lambda$ for the fundamental cavity mode in both structures. For each method, the relevant computational parameters are systematically varied to estimate the computational uncertainty. We show that some methods are more suitable than others for treating these challenging geometries.



قيم البحث

اقرأ أيضاً

In this Letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavitie s for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via 2-D and 3-D full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that, for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.
The development of solid-state photonic quantum technologies is of great interest for fundamental studies of light-matter interactions and quantum information science. Diamond has turned out to be an attractive material for integrated quantum informa tion processing due to the extraordinary properties of its colour centres enabling e.g. bright single photon emission and spin quantum bits. To control emitted photons and to interconnect distant quantum bits, micro-cavities directly fabricated in the diamond material are desired. However, the production of photonic devices in high-quality diamond has been a challenge so far. Here we present a method to fabricate one- and two-dimensional photonic crystal micro-cavities in single-crystal diamond, yielding quality factors up to 700. Using a post-processing etching technique, we tune the cavity modes into resonance with the zero phonon line of an ensemble of silicon-vacancy centres and measure an intensity enhancement by a factor of 2.8. The controlled coupling to small mode volume photonic crystal cavities paves the way to larger scale photonic quantum devices based on single-crystal diamond.
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed cavities with theoretical Quality factors as high as 14 million. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a Quality factor of nearly 750,000. The effect of cavity size on mode frequency and Quality factor was simulated and then verified experimentally.
Numerical optimization is an important tool in the field of computational physics in general and in nano-optics in specific. It has attracted attention with the increase in complexity of structures that can be realized with nowadays nano-fabrication technologies for which a rational design is no longer feasible. Also, numerical resources are available to enable the computational photonic material design and to identify structures that meet predefined optical properties for specific applications. However, the optimization objective function is in general non-convex and its computation remains resource demanding such that the right choice for the optimization method is crucial to obtain excellent results. Here, we benchmark five global optimization methods for three typical nano-optical optimization problems: removed{downhill simplex optimization, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, particle swarm optimization, differential evolution, and Bayesian optimization} added{particle swarm optimization, differential evolution, and Bayesian optimization as well as multi-sta
113 - Sergei Sokolov 2015
We perform spatially dependent tuning of a GaInP photonic crystal cavity using a continuous wave violet laser. Local tuning is obtained by laser heating of the photonic crystal membrane. The cavity resonance shift is measured for different pump posit ions and for two ambient gases: helium and nitrogen. We find that the width of the temperature profile induced in the membrane depends strongly on the thermal conductivity of the ambient gas. For He gas a narrow spatial width of the temperature profile of 2.8 um is predicted and verified in experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا