ﻻ يوجد ملخص باللغة العربية
To contribute to the understanding of noncovalent binding of halogenated molecules with a biological activity, electrostatic potential (ESP) maps of more than 2,500 compounds were thoroughly analysed. A peculiar region of positive ESP, called $sigma$-hole, is a concept of central importance for halogen bonding. We aim at simplifying the view on $sigma$-holes and provide general trends in organic drug-like molecules. The results are in fair agreement with crystallographic surveys of small molecules as well as of biomolecular complexes and attempt to improve the intuition of chemists when dealing with halogenated compounds.
A new measure of the crystal-field strength, complementary to the conventional one, is defined. It is based on the rotational invariants |B_{k0}|_{av} or |sum_{k}B_{k0}|_{av}, k=2,4,6, of the crystal-(ligand)-field (CF) Hamiltonian H_{CF} parametriza
Halogen bonding has emerged as an important noncovalent interaction in a myriad of applications, including drug design, supramolecular assembly, and catalysis. Current understanding of the halogen bond is informed by electronic structure calculations
The high energy evolution equations that describe the evolution of hadronic amplitudes with energy are derived assuming eikonal interaction of the evolved hadronic wave function with the target. In this note we remark that this derivation allows a di
In this paper I propose a new way for counting the microstates of a system out of equilibrium. As, according to quantum mechanics, things happen as if a given particle can be found in more than one state at once, I extend this concept to propose the
We have experimentally determined the lateral registry and geometric structure of free-base porphine (2H-P) and copper-metalated porphine (Cu-P) adsorbed on Cu(111), by means of energy-scanned photoelectron diffraction (PhD), and compared the experim