ﻻ يوجد ملخص باللغة العربية
We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of viscous nature. Their high accuracy is demonstrated by comparison to simulation results.
The structure and dynamics of confined suspensions of particles of arbitrary shape is of interest in multiple disciplines, from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and partic
We consider the active Brownian particle (ABP) model for a two-dimensional microswimmer with fixed speed, whose direction of swimming changes according to a Brownian process. The probability density for the swimmer evolves according to a Fokker-Planc
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from
Particles suspended in a Newtonian fluid raise the viscosity and also generally give rise to a shear-rate dependent rheology. In particular, pronounced shear thickening may be observed at large solid volume fractions. In a recent article (R. Seto, R.
We describe and summarize a class of minimal numerical models emerged from recent development of simulation methods for dense particle suspensions in overdamped linear flows. The main ingredients include (i) a frame-invariant, short-range lubrication