ترغب بنشر مسار تعليمي؟ اضغط هنا

hCOSMOS: a dense spectroscopic survey of $rleqslant21.3$ galaxies in the COSMOS field

146   0   0.0 ( 0 )
 نشر من قبل Ivana Damjanov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ivana Damjanov




اسأل ChatGPT حول البحث

We describe the hCOSMOS redshift survey of the COSMOS field conducted with the Hectospec spectrograph on the MMT. In the central 1~deg$^2$, the hCOS20.6 subset of the survey is $>90%$ complete to a limiting $r=20.6$. The hCOSMOS survey includes 1701 new redshifts in the COSMOS field. We also use the total of 4362 new and remeasured objects to derive the age sensitive D$_n4000$ index over the entire redshift interval $0.001lesssim zlesssim0.6$. For $85%$ of the quiescent galaxies in hCOS20.6, we measure the central line-of-sight velocity dispersion. To explore potential uses of this survey, we combine previously measured galaxy sizes, profiles and stellar masses with the spectroscopy. The comparison reveals the known relations among structural, kinematic, and stellar population properties. We also compare redshift and D$_n4000$ distributions of hCOS20.6 galaxies with SHELS; a complete spectroscopic survey of 4~deg$^2$ observed to the same depth. The redshift distributions in the two fields are very different but the D$_n4000$ distribution is remarkably similar. The relation between velocity dispersion and stellar mass for massive hCOS20.6 galaxies is consistent with the local relation from SDSS. Using measured velocity dispersions, we test a photometric proxy calibrated to galaxies in the local universe. The systematic differences between the measured and photometric proxy velocity dispersions are correlated with galaxy dynamical and stellar population properties highlighting the importance of direct spectroscopic measurements.



قيم البحث

اقرأ أيضاً

We present a catalog of 10718 objects in the COSMOS field observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ~5500-9800A. The catalog contains 6617 object s with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I_AB~23 and K_AB~21, with a secondary peak at K_AB~24. We sample a broad redshift distribution in the range 0<z<6, with one peak at z~1, and another one around z~4. We have identified 13 redshift spikes at z>0.65 with chance probabilities <4xE-4$, some of which are clearly related to protocluster structures of sizes >10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Ly-alpha background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4.
Submillimetre galaxies (SMGs) are bright sources at submillimetre wavelengths. Made up of mostly of high-z galaxies, SMGs are amongst the most luminous dusty galaxies in the Universe. Studying their environments and clustering strength is thus import ant to put these galaxies in a cosmological context. We present an environmental study of a sample of 116 SMGs in 96 ALMA observation fields, which were initially discovered with the AzTEC camera on ASTE and identified with high-resolution ALMA imaging within the COSMOS survey field, having either spectroscopic or unambiguous photometric redshift. We analysed their environments making use of the latest release of the COSMOS photometric catalogue, COSMOS2015, a catalogue that contains precise photometric redshifts for more than half a million objects over the 2deg2 COSMOS field. We searched for dense galaxy environments computing the so-called overdensity parameter as a function of distance within a radius of 5 arcmin from the SMG. We validated this approach spectroscopically for those SMGs for which spectroscopic redshift is available. As an additional test, we searched for extended X-ray emission as a proxy for the hot intracluster medium, performing an X-ray stacking analysis in the 0.5-2 keV band with a 32 arcsec aperture and our SMG position using all available XMM-Newton and Chandra X-ray observations of the COSMOS field. We find that 27% (31 out of 116) of the SMGs in our sample are located in a galactic dense environment; a fraction that is similar to previous studies. The spectroscopic redshift is known for 15 of these 31 sources, thus this photometric approach is tested using spectroscopy. We are able to confirm that 7 out of 15 SMGs lie in high-density peaks. However, the search for associated extended X-ray emission via an X-ray stacking analysis leads to a detection that is not statistically significant.
The Planck satellite has identified more than 2000 protocluster candidates with extreme star formation rates (SFRs). Here, we present the spectroscopic identification of a Planck-selected protocluster located in the Cosmos field, PHz G237.01+42.50 (G 237). G237 contains a galaxy overdensity of 31 spectroscopically identified galaxies at z~2.16 (significant at 5.4 sigma) in a 10x11 region. The overdensity contains two substructures or protoclusters at <z>~2.16 and 2.195 with estimated halo masses at z=0 of ~(5-6)x10^14 Msun. The overdensity total SFR, ~4000 Msun/yr, is higher than predicted by simulations but much smaller than the SFR derived from the Planck data. The analysis of the Herschel data, in combination with the available ancillary data, shows that such a difference is due to an effect of source alignment along the line of sight that produces a 5 sigma overdensity of red Herschel sources in the field. We analyze the members UV spectra and UV-far-infrared spectral energy distributions to derive their SFR, stellar mass, and metallicity. Galaxy members include blue star-forming galaxies and AGN with SFRs and stellar masses consistent with the main sequence. AGN, identified through optical spectroscopy or X-ray data, represent a significant fraction (20+/-10%) of all members of the protocluster at z=2.16, and they are powerful enough to produce radiative feedback. The core of this protocluster, besides being denser, includes members that are, on average, more massive and star-forming and contains a larger fraction of AGN and Herschel-detected galaxies than the full sample, suggesting an environmental effect on galaxy growth. A comparison between G237 and other protoclusters in the literature at similar redshifts reveals some common traits and differences that reflect both observational biases and a diversity in intrinsic properties that is not yet fully understood.
We present 16 new ultrabright $H_{AB}lesssim25$ galaxy candidates at z~8 identified over the COSMOS/UltraVISTA field. The new search takes advantage of the deepest-available ground-based optical and near-infrared observations, including the DR3 relea se of UltraVISTA and full-depth Spitzer/IRAC observations from the SMUVS and SPLASH programs. Candidates are selected using Lyman-break criteria, combined with strict optical non-detection and SED-fitting criteria, minimizing contamination by low-redshift galaxies and low-mass stars. HST/WFC3 coverage from the DASH program reveals that one source evident in our ground-based near-IR data has significant substructure and may actually correspond to 3 separate z~8 objects, resulting in a sample of 18 galaxies, 10 of which seem to be fairly robust (with a >97% probability of being at z>7). The UV-continuum slope $beta$ for the bright z~8 sample is $beta=-2.2pm0.6$, bluer but still consistent with that of similarly bright galaxies at z~6 ($beta=-1.55pm0.17$) and z~7 ($beta=-1.75pm0.18$). Their typical stellar masses are 10$^{9.1^{+0.5}_{-0.4}}M_{odot}$, with the SFRs of $32^{+44}_{-32}M_{odot}$/year, specific SFR of $4^{+8}_{-4}$ Gyr$^{-1}$, stellar ages of $sim22^{+69}_{-22}$,Myr, and low dust content A$_V=0.15^{+0.30}_{-0.15}$ mag. Using this sample we constrain the bright end of the z~8 UV luminosity function (LF). When combined with recent empty field LF estimates at z~8-9, the resulting z~8 LF can be equally well represented by either a Schechter or a double power-law (DPL) form. Assuming a Schechter parameterization, the best-fit characteristic magnitude is $M^*= -20.95^{+0.30}_{-0.35}$ mag with a very steep faint end slope $alpha=-2.15^{+0.20}_{-0.19}$. These new candidates include amongst the brightest yet found at these redshifts, 0.5-1.0 mag brighter than found over CANDELS, providing excellent targets for follow-up studies.
We present spectroscopic redshifts of S(870)>2mJy submillimetre galaxies (SMGs) which have been identified from the ALMA follow-up observations of 870um detected sources in the Extended Chandra Deep Field South (the ALMA-LESS survey). We derive spect roscopic redshifts for 52 SMGs, with a median of z=2.4+/-0.1. However, the distribution features a high redshift tail, with ~25% of the SMGs at z>3. Spectral diagnostics suggest that the SMGs are young starbursts, and the velocity offsets between the nebular emission and UV ISM absorption lines suggest that many are driving winds, with velocity offsets up to 2000km/s. Using the spectroscopic redshifts and the extensive UV-to-radio photometry in this field, we produce optimised spectral energy distributions (SEDs) using Magphys, and use the SEDs to infer a median stellar mass of M*=(6+/-1)x10^{10}Msol for our SMGs with spectroscopic redshifts. By combining these stellar masses with the star-formation rates (measured from the far-infrared SEDs), we show that SMGs (on average) lie a factor ~5 above the main-sequence at z~2. We provide this library of 52 template fits with robust and well-sampled SEDs available as a resource for future studies of SMGs, and also release the spectroscopic catalog of ~2000 (mostly infrared-selected) galaxies targeted as part of the spectroscopic campaign.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا